1
|
Tieu MV, Abafogi AT, Hoang TX, Pham DT, Park J, Park S, Park S, Cho S. Impedimetric Gram-Positive Bacteria Biosensor Using Vancomycin-Coated Silica Nanoparticles with a Gold Nanocluster-Deposited Electrode. Anal Chem 2024; 96:16658-16667. [PMID: 39279360 DOI: 10.1021/acs.analchem.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We introduce a swift, label-free electrochemical biosensor designed for the precise on-site detection of Gram-positive bacteria via electrochemical impedance spectroscopy. The biosensor was prepared by electroplating the electrode surface with gold nanoclusters (AuNCs) on the gold-interdigitated wave-shaped electrode with a printed circuit board (Au-PCB) electrode, which plays a role in cost-effective and promising lab-on-a-chip microsystems and integrated biosensing systems. This was followed by the application of silica nanoparticle-modified vancomycin (SiNPs-VAN) that binds to Gram-positive bacteria and facilitates their detection on the AuNC-coated surface. The biosensor demonstrated remarkable sensitivity and specificity. It could detect as few as 102 colony-forming units (CFU)/mL of Staphylococcus aureus, 101 CFU/mL of Bacillus cereus, and 102 CFU/mL of Micrococcus luteus within 20 min. Additionally, SiNPs-VAN is also known for its high stability, low cost, and ease of preparation. It is effective in identifying Gram-positive bacteria in water samples across a concentration range of 102-105 CFU/mL and shows selective identification of Gram-positive bacteria with minimal interference from Gram-negative bacteria like Escherichia coli. The ability of the biosensor to quantify Gram-positive bacteria aligns well with the results obtained from the quantitative real-time polymerase chain reaction (qRT-PCR). These findings highlight the potential of electrochemical biosensors for the detection of pathogens and other biological entities, marking a significant advancement in this field.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Abdurhaman Teyib Abafogi
- School of Mechanical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea
| | - Duc-Trung Pham
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Jaehwan Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Sungho Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Sungbo Cho
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
2
|
Sharma S, Kar D, Khanikar PD, Moudgil A, Mishra P, Das S. Hybrid MoSe 2/P3HT Transistor for Real-Time Ammonia Sensing in Biofluids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30648-30657. [PMID: 38843092 DOI: 10.1021/acsami.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Organic and inorganic hybrid field-effect transistors (FETs), utilizing layered molybdenum diselenide (MoSe2) and an organic semiconductor poly(3-hexylthiophene) (P3HT), are presented for biosensing applications. A new hybrid device structure that combines organic (P3HT) and inorganic (MoSe2) components is showcased for accurate and selective bioanalyte detection in human bodily fluids to overcome 2D-transition metal dichalcogenides (TMDs) nonspecific interactions. This hybrid structure utilizes organic and inorganic semiconductors' high surface-to-volume ratio, carrier transport, and conductivity for biosensing. Ammonia concentrations in saliva and plasma are closely linked to physiological and pathological conditions of the human body. A highly sensitive hybrid FET biosensor detects total ammonia (NH4+ and NH3) from 0.5 μM to 1 mM concentrations, with a detection limit of 0.65 μM in human bodily fluids. The sensor's ammonia specificity in artificial saliva against interfering species is showcased. Furthermore, the fabricated hybrid FET device exhibits a stable and repeatable response to ammonia in both saliva and plasma, achieving a remarkable response level of 2300 at a 1 mM concentration of ammonia, surpassing existing literature by 10-fold. This hybrid FET biosensing platform holds significant promise for developing a precise tool for the real-time monitoring of ammonia concentrations in human biological fluids, offering potential applications in point-of-care diagnostics.
Collapse
Affiliation(s)
- Sumit Sharma
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debashree Kar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prabal Dweep Khanikar
- University of Queensland-IIT Delhi Academy of Research (UQIDAR), Hauz Khas, New Delhi 110016, India
| | - Akshay Moudgil
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Samaresh Das
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Zhang J, Qi H, Wu JJ, Mao X, Zhang H, Amin N, Xu F, Dong C, Wang C, Wang P, Zheng L. Disposable Peptidoglycan-Specific Biosensor for Noninvasive Real-Time Detection of Broad-Spectrum Gram-Positive Bacteria in Exhaled Breath Condensates. Anal Chem 2024; 96:9817-9825. [PMID: 38730304 DOI: 10.1021/acs.analchem.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Rapidly identifying and quantifying Gram-positive bacteria are crucial to diagnosing and treating bacterial lower respiratory tract infections (LRTIs). This work presents a field-deployable biosensor for detecting Gram-positive bacteria from exhaled breath condensates (EBCs) based on peptidoglycan recognition using an aptamer. Dielectrophoretic force is employed to enrich the bacteria in 10 s without additional equipment or steps. Concurrently, the measurement of the sensor's interfacial capacitance is coupled to quantify the bacteria during the enrichment process. By incorporation of a semiconductor condenser, the whole detection process, including EBC collection, takes about 3 min. This biosensor has a detection limit of 10 CFU/mL, a linear range of up to 105 CFU/mL and a selectivity of 1479:1. It is cost-effective and disposable due to its low cost. The sensor provides a nonstaining, culture-free and PCR-independent solution for noninvasive and real-time diagnosis of Gram-positive bacterial LRTIs.
Collapse
Affiliation(s)
- Jian Zhang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haochen Qi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
- Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xuanjiao Mao
- Clinical Laboratory, The People's Hospital of Pingyang, Wenzhou 325400, China
| | - Hailin Zhang
- Department of Children's Respiratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Niloufar Amin
- Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Feng Xu
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Changkun Dong
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chunchang Wang
- Laboratory of Dielectric Functional Materials, School of Materials Science & Engineering, Anhui University, Hefei 230601, China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Ma Y, Lin X, Xue B, Luan D, Jia C, Feng S, Bian X, Zhao J. Ultrasensitive and Highly Selective Detection of Staphylococcus aureus at the Single-Cell Level Using Bacteria-Imprinted Polymer and Vancomycin-Conjugated MnO 2 Nanozyme. Anal Chem 2024; 96:8641-8647. [PMID: 38716697 DOI: 10.1021/acs.analchem.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO2 nanozyme (Van@BSA-MnO2) for the ultrasensitive detection of pathogenic bacteria, exemplified by Staphylococcus aureus (S. aureus). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of S. aureus. Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO2 nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO2 complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured S. aureus, the Van@BSA-MnO2 complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying S. aureus at concentrations as low as 10 CFU mL-1 without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target S. aureus from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yixin Ma
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaojun Bian
- College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
5
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zheng Y, Jiang M, Zhu X, Chen Y, Feng L, Zhu H. Metabolic labeling-mediated visualization, capture, and inactivation of Gram-positive bacteria via biotin-streptavidin interactions. Chem Commun (Camb) 2024. [PMID: 38477080 DOI: 10.1039/d4cc00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We introduce a biotinylated D-amino acid probe capable of metabolically incorporating into bacterial PG. Leveraging the robust affinity between biotin and streptavidin, the probe has demonstrated efficacy in imaging, capture, and targeted inactivation of Gram-positive bacteria through synergistic pairings with commercially available streptavidin-modified fluorescent dyes and nanomaterials. The versatility of the probe is underscored by its compatibility with a variety of commercially available streptavidin-modified reagents. This adaptability allows the probe to be applied across diverse scenarios by integrating with these commercial reagents.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Yuyuan Chen
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Lisha Feng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| |
Collapse
|
7
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
8
|
Joseph S, Rajpal S, Kar D, Devinder S, Pandey S, Mishra P, Joseph J. Guided mode resonance immunosensor for label-free detection of pathogenic bacteria Pseudomonas aeruginosa. Biosens Bioelectron 2023; 241:115695. [PMID: 37776624 DOI: 10.1016/j.bios.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Photonic biosensors are promising platforms for the rapid detection of pathogens with the potential to replace conventional diagnostics based on microbiological culturing methods. Intricately designed sensing elements with robust architectures can offer highly sensitive detection at minimal development cost enabling rapid adoption in low-resource settings. In this work, an optical detection scheme is developed by structuring guided mode resonance (GMR) on a highly stable, transparent silicon nitride (SiN) substrate and further biofunctionalized to identify a specific bacteria Pseudomonas aeruginosa. The resonance condition of the GMR chip is optimized to have relatively high bulk sensitivity with a good quality factor. The biofunctionalization aims at oriented immobilization of specific antibodies to allow maximum bacteria attachment and improved specificity. The sensitivity of the assays is evaluated for clinically relevant concentrations ranging from 102 to 108 CFU/mL. From the calibration curves, the sensitivity of the chip is extracted as 0.134nm/Log10 [concentration], and the detection modality possesses a favorably good limit of detection (LOD) 89 CFU/mL. The use of antibodies as a biorecognition element complemented with a good figure of merit of GMR sensing element allows selective bacteria identification compared to other non-specific pathogenic bacteria that are relevant for testing physiological samples. Our developed GMR biosensor is low-cost, easy to handle, and readily transformable into a portable handheld detection modality for remote usage.
Collapse
Affiliation(s)
- Shereena Joseph
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Debashree Kar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shital Devinder
- Centre for Sensors, Instruments and Cyber Physical System Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Saurabh Pandey
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Joby Joseph
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India; Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
9
|
Pan X, Shi D, Fu Z, Shi H. Rapid separation and detection of Listeria monocytogenes with the combination of phage tail fiber protein and vancomycin-magnetic nanozyme. Food Chem 2023; 428:136774. [PMID: 37433255 DOI: 10.1016/j.foodchem.2023.136774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
In this work, a lateral flow assay for Listeria monocytogenes was developed based on phage tail fiber protein (TFP) and triple-functional nanozyme probes with capture-separation-catalytic activity. Inspired by interaction between phage and bacteria, TFP of L. monocytogenes phage was immobilized on test line as capture molecule, which replaced traditional antibody and aptamer. After Gram-positive bacteria was captured and separated from samples by nanozyme probes modified with vancomycin (Van), TFP specifically recognized L. monocytogenes and overcame non-specific binding of Van. Special color reaction between Coomassie Brilliant Blue and bovine serum albumin which was an amplification carrier on probe was simply utilized as control zone to replace traditional control line. Relying on enzyme-like catalytic activity of nanozyme, this biosensor realized improved sensitivity and colorimetric quantitative detection with a detection limit of 10 CFU mL-1. Analytic performance results suggested this TFP-based biosensor provided a portable, sensitive and specific strategy to detect pathogen.
Collapse
Affiliation(s)
- Xun Pan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dongling Shi
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Cui C, Hong H, Shi Y, Zhou Y, Qiao CM, Zhao WJ, Zhao LP, Wu J, Quan W, Niu GY, Wu YB, Li CS, Cheng L, Hong Y, Shen YQ. Vancomycin Pretreatment on MPTP-Induced Parkinson's Disease Mice Exerts Neuroprotection by Suppressing Inflammation Both in Brain and Gut. J Neuroimmune Pharmacol 2023; 18:72-89. [PMID: 35091889 DOI: 10.1007/s11481-021-10047-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023]
Abstract
A growing body of evidence implies that gut microbiota was involved in pathogenesis of Parkinson's disease (PD), but the mechanism is still unclear. The aim of this study is to investigate the effects of antibiotics pretreatment on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. In this study, vancomycin pretreatment was given by gavage once daily with either vancomycin or distilled water for 14 days to mice, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to establish an acute PD model. Results show that vancomycin pretreatment significantly improved motor dysfunction of mice in pole and traction tests. Although vancomycin pretreatment had no effect on dopamine (DA) or the process of DA synthesis, it inhibited the metabolism of DA by suppressing the expression of striatal monoamine oxidase B (MAO-B). Furthermore, vancomycin pretreatment reduced the number of astrocytes and microglial cells in the substantia nigra pars compacta (SNpc) to alleviate neuroinflammation, decreased the expression of TLR4/MyD88/NF-κB/TNF-α signaling pathway in both brain and gut. Meanwhile, vancomycin pretreatment changed gut microbiome composition and the levels of fecal short chain fatty acids (SCFAs). The abundance of Akkermansia and Blautia increased significantly after vancomycin pretreatment, which might be related to inflammation and inhibition of TLR4 signaling pathway. In summary, these results demonstrate that the variation of gut microbiota and its metabolites induced by vancomycin pretreatment might decrease dopamine metabolic rate and relieve inflammation in both gut and brain via the microbiota-gut-brain axis in MPTP-induced PD mice. The neuroprotection of vancomycin pretreatment on MPTP-induced Parkinson's disease mice The alterations of gut microbiota and SCFAs induced by vancomycin pretreatment might not only improve motor dysfunction, but also decrease dopamine metabolism and relieve inflammation in both brain and gut via TLR4/MyD88/NF-κB/TNF-α pathway in MPTP-induced PD mice.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Hong
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Shi
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Zhou
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li-Ping Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Quan
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gu-Yu Niu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yi-Bo Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chao-Sheng Li
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Alshammari MH, Alshammari AO, Elabbasy MT, Zreiq R, El-Morsy M, Menazea A, Abd El-Kader M. Physicochemical characterization tungsten oxide modified hydroxyapatite embedded into polylactic acid nanocomposite for biomedical applications. RESULTS IN PHYSICS 2023; 49:106446. [DOI: 10.1016/j.rinp.2023.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Das C, Singh S, Bhakta S, Mishra P, Biswas G. Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater. CHEMOSPHERE 2022; 291:132673. [PMID: 34736943 DOI: 10.1016/j.chemosphere.2021.132673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study reports a greener, cheaper and convenient approach to synthesize Terminalia arjuna bark extract coated magnetite nanoparticles (TA@MNPs) using the co-precipitation method and efficient removal of methylene blue (MB) and lead ions [Pb(II)] from simulated wastewater. The synthesized nanoparticles (NPs) were characterized by various techniques such as DLS, XRD, FTIR, HRTEM, AGM, and TGA. From TGA analysis, TA@MNPs was found to be stable even after 500 °C. Using the batch method, maximum removal was achieved at pH 9.0 for MB and pH 3.0 for Pb(II) solutions, respectively. Adsorption study showed that TA@MNPs followed pseudo-second-order kinetics by both adsorbates while isotherm modeling towards adsorption of Pb(II) and MB exhibited Langmuir and Freundlich isotherm respectively. The maximum adsorption capacity for Pb(II) on TA@MNPs was 210.5 mg g-1. The thermodynamic study proved the spontaneity of the physisorption process. Regeneration studies were also performed using five different eluents for the two adsorbents. Overall, TA@MNPs effectively removed pollutants from wastewater and thus could be potentially useful in providing clean water in a cheaper way.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Sanjay Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College, Cooch Behar, West Bengal, 736101, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India.
| |
Collapse
|
13
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
14
|
Bacitracin and isothiocyanate functionalized silver nanoparticles for synergistic and broad spectrum antibacterial and antibiofilm activity with selective toxicity to bacteria over mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112649. [PMID: 35034824 DOI: 10.1016/j.msec.2022.112649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles functionalized with bacitracin (BA), a cyclic peptide and isothiocyanate (ITC), a natural plant product, was fabricated. The particle size of AgNP-BA&ITC was optimized using full factorial design. The optimized particles were of 10-15 nm in size as seen under TEM and showed chemical signature of both bacitracin as well as isothiocynate in FTIR spectroscopy. XRD analysis confirmed the crystalline nature of these particles. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) showed 21 mg/g silver content in AgNP-BA &ITC. These nanoparticles exhibited MIC in the range of 12.5-25 μg/mL and > 3 log10 reduction in cell viability for both Gram positive and Gram-negative bacteria. They clearly demonstrated biofilm inhibition (BIC90 = 150-400 μg/mL) as well as were capable of eradicating both young and mature preformed biofilms as observed by live/dead imaging and crystal violet assay. Further cytotoxicity assay suggests high selectivity (IC50/MIC90 value = 15.2-30.4) of these particles. The results in the present investigation provide role of these novel nanoparticles having substantially low silver content with reduced toxicity and good antibacterial and antibiofilm activity for external wound healing applications.
Collapse
|
15
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Chen LJ, Liu YY, Zhao X, Yan XP. Vancomycin-Functionalized Porphyrinic Metal-Organic Framework PCN-224 with Enhanced Antibacterial Activity against Staphylococcus Aureus. Chem Asian J 2021; 16:2022-2026. [PMID: 34096181 DOI: 10.1002/asia.202100546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Indexed: 11/07/2022]
Abstract
A vancomycin (Van) modification strategy on a porphyrinic metal-organic framework (MOF) PCN-224 is presented. The obtained Van-PCN-224 gives the combined advantages of porphyrinic MOF and Van with high photosensitive activity and excellent targeted antibacterial activity against Staphylococcus aureus. The features make Van-PCN-224 promising for antimicrobial therapy.
Collapse
Affiliation(s)
- Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yao-Yao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
17
|
Rajpal S, Bhakta S, Mishra P. Biomarker imprinted magnetic core-shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J Mater Chem B 2021; 9:2436-2446. [PMID: 33625438 DOI: 10.1039/d0tb02842h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid and selective detection of microorganisms in complex biological systems draws huge attention to address the rising issue of antimicrobial resistance. Diagnostics based on the identification of whole microorganisms are laborious, time-consuming and costly, thus alternative strategies for early clinical diagnosis include biomarker based microbial detection. This paper describes a low-cost, easy-to-use method for the detection of Pseudomonas aeruginosa infections by specifically identifying a biomarker pyocyanin, using surface-molecularly imprinted nanoparticles or "plastibodies". The selective nanopockets are created by templating pyocyanin onto 20 nm allyl-functionalized magnetic nanoparticles coated with a thin layer of the acrylamide-based polymer. This functional material with an impressive imprinting factor (IF) of 5 and a binding capacity of ∼2.5 mg g-1 of polymers can be directly applied for the detection of bacteria in complex biological samples based on the presence of pyocyanin. These MIPs are highly selective and sensitive to pyocyanin and can consistently bind with pyocyanin in repeated use. Finally, the facile and efficient capture of pyocyanin has versatile applications ranging from biomarker based culture free detection of P. aeruginosa to monitoring of the therapeutic regime, in addition to developing a new class of antibiotics.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Snehasis Bhakta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India. and Department of Chemistry, Cooch Behar College, West Bengal 736101, India and Nanoscale Research Facilities, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
18
|
Castle LM, Schuh DA, Reynolds EE, Furst AL. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens 2021; 6:1717-1730. [PMID: 33955227 DOI: 10.1021/acssensors.1c00481] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial foodborne pathogens cause millions of illnesses each year and disproportionately impact those in developing countries. To combat these diseases and their spread, effective monitoring of foodborne pathogens is needed. Technologies to detect these microbes must be deployable at the point-of-contamination, often in nonideal environments. Electrochemical sensors are uniquely suited for field-deployable monitoring, as they are quantitative, rapid, and do not require expensive instrumentation. When combined with the inherent recognition capabilities of biomolecules, electrochemistry is unmatched for quantitative biological measurements with minimal equipment requirements. This Review is centered on recent advances in electrochemical sensors for the detection of bacterial foodborne pathogens with a specific emphasis on field-deployable platforms, as this is a key requirement of any technology that could effectively halt the spread of foodborne diseases. Innovative electrochemical sensing strategies are highlighted that demonstrate the ability of these technologies to achieve high sensitivity and large detection ranges with rapid readout. Sensing strategies are categorized on the basis of whether they incorporate biological pretreatments or biorecognition elements, and their key advantages and disadvantages are summarized. As this class of sensors continues to mature, methods to incorporate device specificity and to detect targets from complex solutions will enable the translation of these platforms from laboratory prototypes to real-world implementation.
Collapse
Affiliation(s)
- Lauren M. Castle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daena A. Schuh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin E. Reynolds
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Yao Y, Xie G, Zhang X, Yuan J, Hou Y, Chen H. Fast detection of E. coli with a novel fluorescent biosensor based on a FRET system between UCNPs and GO@Fe 3O 4 in urine specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2209-2214. [PMID: 33908469 DOI: 10.1039/d1ay00320h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biosensors based on nanomaterials are becoming a research hotspot for the rapid detection of pathogenic bacteria. Herein, a "turn-on" fluorescent biosensor based on a FRET system was constructed for the fast detection of a representative pathogenic microorganism, namely, E. coli, which causes most urinary tract infections. This biosensor was constructed by utilizing synthesized UCNPs as fluorescent donors with stable luminescence performance in complex biological samples and GO@Fe3O4 as a receptor with both excellent adsorption ability and fluorescence quenching ability. A specific ssDNA selected as an aptamer which could recognize E. coli was immobilized on the UCNPs to form UCNP-Apt nanoprobes. The nanoprobes were adsorbed on the surface of GO@Fe3O4 through the π-stacking interactions between aptamers and GO. In the presence of E. coli, UCNP-Apt nanoprobes detached from GO@Fe3O4 due to the specific recognition of aptamers and bacteria, resulting in obvious fluorescence recovery, and the concentration of bacteria was positively correlated with the intensity of the fluorescence signal; such a "turn-on" signal output mode ensures excellent precision. In addition, the easy magnetic separation of GO@Fe3O4 simplifies the operation process, helping the sensor detect bacteria in 30 minutes with a linear range from 103 to 107 CFU mL-1 and a limit of detection of 467 CFU mL-1. Moreover, recovery test results also showed that the sensor has clinical application potential for the rapid detection of pathogenic microorganisms in complex biological samples.
Collapse
Affiliation(s)
- Yuan Yao
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Xin Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Jinshan Yuan
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Yulei Hou
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Hui Chen
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
20
|
Chen G, Yang G, Wang Y, Deng M, Wang Z, Aguilar ZP, Xu H. Antibiotic-Based Magnetic Nanoprobes Combined with mPCR for Simultaneous Detection of Staphylococcus aureus and Bacillus cereus. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02026-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Tan F, Zhai M, Meng X, Wang Y, Zhao H, Wang X. Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices. Biosens Bioelectron 2021; 184:113220. [PMID: 33878592 DOI: 10.1016/j.bios.2021.113220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 01/07/2023]
Abstract
A hybrid recognition interface combining peptide and molecularly imprinted polymer (MIP) was achieved by introducing a vancomycin binding tripeptide in the preparation of MIP to implement high affinity and specificity recognition of vancomycin in complex matrices. The tripeptide that can specifically bind vancomycin was immobilized onto gold nanoparticles (GNPs) deposited on a glassy carbon electrode (GCE) by Au-S bond, and then a controlled electropolymerization of dopamine was carried out to imprint the vancomycin-peptide complex. After removing vancomycin from the polydopamine (PDA), hybrid peptide-MIP cavities containing multiple binding sites for vancomycin in the MIPDA/peptide/GNPs/GCE were obtained. The electrode had better selectivity and higher sensitivity toward vancomycin than either peptide or MIP modified GNPs/GCE, and the limit of quantification was as low as 10 pM by electrochemical impedance spectroscopy. The real samples, including fetal calf serum, probiotic drink and honey spiked with 0.17-2.0 μM vancomycin were analyzed on the MIPDA/peptide/GNPs/GCE, with the recoveries of 92.16-104.67%. The present study provides a sensitive, reliable method for the detection of vancomycin in complex matrices.
Collapse
Affiliation(s)
- Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingyan Zhai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xuejie Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaochun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
22
|
Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal Chim Acta 2021; 1157:338279. [PMID: 33832584 DOI: 10.1016/j.aca.2021.338279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
Rapid and reliable detection of pathogenic bacteria at the early stage represents a highly topical research area for food safety and public health. Although culture based method is the gold standard method for bacteria detection, recent techniques have promoted the development of alternative methods, such as surface enhanced Raman scattering (SERS). SERS provides additional advantages of high speed, simultaneous detection and characterization, multiplex analysis, and comparatively low cost. However, conventional SERS methods for bacteria detection are facing limitations of low sensitivity, susceptible to matrix interference, and poor accuracy. In recent years, specific detection of pathogenic bacteria with dual recognition based SERS methods has attracted increasing attentions. These methods include two steps recognition of target bacteria, and integrate the functions of target separation and detection. Considering their merits of excellent specificity, ultrahigh sensitivity, multiplex detection capability, and potential for on-site applications, these methods are promising alternatives for rapid and reliable detection of pathogenic bacteria. Herein, this review aims to summarize the recent advances in dual recognition based SERS methods for specific detection of pathogenic bacteria. Their advantages and limitations are discussed, and further perspectives are tentatively given. This review provides new insights into the application of SERS as a reliable tool for pathogenic bacteria detection.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yan Sun
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Li Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ying Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, MA, 01003, USA
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
23
|
Rodriguez RS, O'Keefe TL, Froehlich C, Lewis RE, Sheldon TR, Haynes CL. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal Chem 2020; 93:23-40. [PMID: 33147958 DOI: 10.1021/acs.analchem.0c04357] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebeca S Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Clarice Froehlich
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Trever R Sheldon
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020; 165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, MD, 21250, United States.
| |
Collapse
|
25
|
Abstract
BACKGROUND Vancomycin is effective against Gram-positive bacteria and considered as a last resort in the case of ineffective use of other antigens. While due to the occurrence of adverse reactions, the application of vancomycin is strictly limited. We will conduct a meta-analysis to summarize adverse reactions of vancomycin in humans. METHODS To collect comprehensive randomized controlled trials (RCTs), the following electronic databases will be searched: PubMed, Embase, Web of Science, Cochrane Library, the China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and China Science and Technology Journal Database. The range of publication time will be from the inception of the database to August 2020 without language limitation. Two reviewers will independently conduct selection of studies, data extraction and management, and assessment of risk of bias. Any disagreement will be resolved by discussion with the third reviewer. Review Manager 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration) will be used for meta-analysis. The Cochrane risk of bias tool will be used to assess the risk of bias. RESULTS This study will synthesize the data from the present eligible high quality RCTs to explore the incidence of adverse reactions such as hypersensitivity reactions, nephrotoxicity, ototoxicity, phlebitis, and agranulocytosis. CONCLUSION This meta-analysis will provide systematic evidence for adverse reactions of vancomycin in humans. STUDY REGISTRATION NUMBER INPLASY202080094.
Collapse
Affiliation(s)
- Yang Peng
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| | - Chen-yang Li
- Xinjiang Institute of Materia Medica, Xinjiang, China
| | - Zhi-ling Yang
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| | - Wei Shi
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| |
Collapse
|
26
|
Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects. SENSORS 2020; 20:s20185237. [PMID: 32937982 PMCID: PMC7570453 DOI: 10.3390/s20185237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Label-free and real-time monitoring of the bacterial viability is essential for the accurate and sensitive characterization of the antibiotic effects. In the present study, we investigated the feasibility of the interdigitated and wave-shaped electrode (IWE) for monitoring the effect of tetracycline or kanamycin on Staphylococcus aureus (S. aureus) and methicillin-resistant S.aureus (MRSA). The electrical impedance spectra of the IWE immersed in the culture media for bacterial growth were characterized in a frequency range of 10 Hz to 1 kHz. The capacitance index (CI) (capacitance change relevant with the bacterial viability) was used to monitor the antibiotic effects on the S. aureus and MRSA in comparison to the traditional methods (disk diffusion test and optical density (OD) measurement). The experimental results showed that the percentage of change in CI (PCI) for the antibiotic effect on MRSA was increased by 51.58% and 57.83% in kanamycin and control, respectively. In contrast, the PCI value decreased by 0.25% for tetracycline, decreased by 52.63% and 37.66% in the cases of tetracycline and kanamycin-treated S. aureus, and increased 2.79% in the control, respectively. This study demonstrated the feasibility of the IWE-based capacitance sensor for the label-free and real-time monitoring of the antibiotic effects on S. aureus and MRSA.
Collapse
|
27
|
Zhao M, Yao X, Liu S, Zhang H, Wang L, Yin X, Su L, Xu B, Wang J, Lan Q, Zhang D. Antibiotic and mammal IgG based lateral flow assay for simple and sensitive detection of Staphylococcus aureus. Food Chem 2020; 339:127955. [PMID: 32919344 DOI: 10.1016/j.foodchem.2020.127955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
Lateral flow assay (LFA), performed with simple devices and short detection time, is popular in field applications. Herein, a novel sandwich type-based LFA was constructed for high sensitivity and selectivity detection of Staphylococcus aureus (S. aureus). Vancomycin-immobilized gold nanoparticles (VAN-Au NPs) were utilized as the first identifier to capture S. aureus and the specificity was guaranteed by the second recognition agent of pig immunoglobulin G (IgG). In addition, gold growth was adopted for signal amplification to further improve the detection sensitivity. S. aureus could be directly assayed by this LFA within the concentration range of 1.0 × 103-1.0 × 108 cfu mL-1 with a detection limit of 1.0 × 103 cfu mL-1. Furthermore, the novel sandwich LFA realized S. aureus detection in food samples with admissible recoveries and established a rapid, simple, cost-effective and sensitive platform, could meet the demand for on-site testing of S. aureus.
Collapse
Affiliation(s)
- Man Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Han Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baocheng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanxue Lan
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen 518172, Guangdong, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
28
|
Kim KH, Park SJ, Park CS, Seo SE, Lee J, Kim J, Lee SH, Lee S, Kim JS, Ryu CM, Yong D, Yoon H, Song HS, Lee SH, Kwon OS. High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosens Bioelectron 2020; 167:112514. [PMID: 32866713 DOI: 10.1016/j.bios.2020.112514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022]
Abstract
Current techniques for Gram-typing and for diagnosing a pathogen at the early infection stage rely on Gram stains, cultures, Enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and gene microarrays, which are labor-intensive and time-consuming approaches. In addition, a delayed or imprecise diagnosis of clinical pathogenic bacteria leads to a life-threatening emergency or overuse of antibiotics and a high-rate occurrence of antimicrobial-resistance microbes. Herein, we report high-performance antibiotics (as bioprobes) conjugated graphene micropattern field-effect transistors (ABX-GMFETs) to facilitate on-site Gram-typing and help in the detection of the presence or absence of Gram-negative and -positive bacteria in the samples. The ABX-GMFET platform, which consists of recognition probes and GM transistors conjugated with novel interfacing chemical compounds, was integrated into the microfluidics to minimize the required human intervention and facilitate automation. The mechanism of binding of ABX-GMFET was based on a charge or chemical moiety interaction between the bioprobes and target bacteria. Subsequently, ABX-GMFETs exhibited unprecedented high sensitivity with a limit of detection (LOD) of 100 CFU/mL (1-9 CFU/mL), real-time target specificity.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jiyeon Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, Republic of Korea
| | - Soohyun Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, 94720, USA.
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea University of Science and Technology (UST), Republic of Korea.
| |
Collapse
|
29
|
Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn SE, Mahshid SS, Mahshid S. A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23298-23310. [PMID: 32302093 DOI: 10.1021/acsami.0c02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical 3D gold nano-/microislands (NMIs) are favorably structured for direct and probe-free capture of bacteria in optical and electrochemical sensors. Moreover, their unique plasmonic properties make them a suitable candidate for plasmonic-assisted electrochemical sensors, yet the charge transfer needs to be improved. In the present study, we propose a novel plasmonic-assisted electrochemical impedimetric detection platform based on hybrid structures of 3D gold NMIs and graphene (Gr) nanosheets for probe-free capture and label-free detection of bacteria. The inclusion of Gr nanosheets significantly improves the charge transfer, addressing the central issue of using 3D gold NMIs. Notably, the 3D gold NMIs/Gr detection platform successfully distinguishes between various types of bacteria including Escherichia coli (E. coli) K12, Pseudomonas putida (P. putida), and Staphylococcus epidermidis (S. epidermidis) when electrochemical impedance spectroscopy is applied under visible light. We show that distinguishable and label-free impedimetric detection is due to dissimilar electron charge transfer caused by various sizes, morphologies, and compositions of the cells. In addition, the finite-difference time-domain (FDTD) simulation of the electric field indicates the intensity of charge distribution at the edge of the NMI structures. Furthermore, the wettability studies demonstrated that contact angle is a characteristic feature of each type of captured bacteria on the 3D gold NMIs, which strongly depends on the shape, morphology, and size of the cells. Ultimately, exposing the platform to various dilutions of the three bacteria strains revealed the ability to detect dilutions as low as ∼20 CFU/mL in a wide linear range of detection of 2 × 101-105, 2 × 101-104, and 1 × 102-1 × 105 CFU/mL for E. coli, P. putida, and S. epidermidis, respectively. The proposed hybrid structure of 3D gold NMIs and Gr, combined by novel plasmonic and conventional impedance spectroscopy techniques, opens interesting avenues in ultrasensitive label-free detection of bacteria with low cost and high stability.
Collapse
Affiliation(s)
| | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Alireza Sanati
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
30
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|