1
|
Han W, Wei P, Xie L, Zhu L, He B, Cao X. Functional black phosphorus-based sensors for food safety applications: A review. Food Res Int 2024; 192:114775. [PMID: 39147465 DOI: 10.1016/j.foodres.2024.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Food safety has garnered global attention, necessitating advanced methods for the quick and accurate detection of contaminants. Sensors, notable for their ease of use, high sensitivity, and fast analysis, are prominent. Two-dimensional (2D) nanomaterials have been employed to improve sensor performance. Particularly, black phosphorus (BP) stands out with its multifunctional capabilities, attributed to unique layered structure, ultra-high charge mobility, easy surface functionalization, enhanced optical absorption, and tunable direct bandgap. These characteristics suggest that BP could significantly enhance sensor selectivity, sensitivity, and response speed for contaminant detection. Despite numerous studies on BP-based sensors in food safety, few reviews have been comprehensively summarized. Moreover, challenges in BP's preparation and stability restrict its wider use. This paper reviews recent research on BP's role in food safety, covering preparation, passivation, and applications. Through analysis of challenges and prospects, this review aims to provide insightful guidance for upcoming research in this area.
Collapse
Affiliation(s)
- Wei Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Peiyuan Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Limin Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
3
|
Wei H, Wang Z, Wang Y, Ma J, Chen Y, Guo M, Li Y, Du Y, Hu F. Detection of depression marker ASS1 in urine by gold nanoparticles based dual epitope-peptides imprinted sensor. Anal Chim Acta 2023; 1273:341479. [PMID: 37423651 DOI: 10.1016/j.aca.2023.341479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Trace detection of argininosuccinate synthetase 1 (ASS1), a depression marker, in urine samples is difficult to achieve. In this work, a dual-epitope-peptides imprinted sensor for ASS1 detection in urine was constructed based on the high selectivity and sensitivity of the "epitope imprinting approach". First, two cysteine-modified epitope-peptides were immobilized onto gold nanoparticles (AuNPs) deposited on a flexible electrode (ITO-PET) by gold-sulfur bonds (Au-S), then a controlled electropolymerization of dopamine was carried out to imprint the epitope peptides. After removing epitope-peptides, the dual-epitope-peptides imprinted sensor (MIP/AuNPs/ITO-PET) which with multiple binding sites for ASS1 was obtained. Compared with single epitope-peptide, dual-epitope-peptides imprinted sensor had higher sensitivity, which presented a linear range from 0.15 to 6000 pg ml-1 with a low limit of detection (LOD = 0.106 pg mL-1, S/N = 3). It had good reproducibility (RSD = 1.74%), repeatability (RSD = 3.60%), stability (RSD = 2.98%), and good selectivity, and the sensor had good recovery (92.4%-99.0%) in urine samples. This is the first highly sensitive and selective electrochemical assay for the depression marker ASS1 in urine, which is expected to provide help for the non-invasive and objective diagnosis of depression.
Collapse
Affiliation(s)
- Hong Wei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zixia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Jing Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Min Guo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yuanyuan Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Ma T, Zhou J, Wei D, Peng H, Liu X, Guo W, Zhang C, Liu X, Li S, Deng Y. Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. BIOSENSORS 2023; 13:735. [PMID: 37504133 PMCID: PMC10377050 DOI: 10.3390/bios13070735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 μM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.
Collapse
Affiliation(s)
- Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Dan Wei
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongquan Peng
- Department of Nephrology, Kiang Wu Hospital, Macau SAR, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| |
Collapse
|
5
|
Erkmen C, Aydoğdu Tig G, Uslu B. Evaluation of aptamer and molecularly imprinted polymers as a first hybrid sensor for leptin detection at femtogram levels. Talanta 2023; 265:124809. [PMID: 37331044 DOI: 10.1016/j.talanta.2023.124809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Selective and sensitive determination of macromolecules maintains its importance in diagnosing and determining diseases to protect human health. In this study, a hybrid sensor designed with dual recognition elements consisting of both aptamers (Apt) and molecularly imprinted polymers (MIPs) was carried out for the ultra-sensitive determination of Leptin. Firstly, the screen-printed electrode (SPE) surface was coated with platinum nanospheres (Pt NSs) and gold nanoparticles (Au NPs) to provide immobilization of the Apt[Leptin] complex on the surface. In the next step, the formed polymer layer around the complex using the electropolymerization of orthophenilendiamine (oPD) kept the Apt molecules on the surface more effectively. As expected, a synergistic effect occurred between the formed MIP cavities by removing Leptin from the surface and the embedded Apt molecules to fabricate a hybrid sensor. Under optimal conditions, responses in differential pulse voltammetry (DPV) currents showed a linear response over a wide concentration range from 1.0 fg/mL to 10.0 pg/mL with a limit of detection (LOD) of 0.31 fg/mL for Leptin detection. Moreover, the effectiveness of the hybrid sensor was assessed using real samples, such as human serum and plasma samples, and satisfactory recovery findings (106.2-109.0%) were found.
Collapse
Affiliation(s)
- Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tig
- Ankara University, Faculty of Science, Department of Chemistry, 06100, Ankara, Turkey
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
6
|
Blasques RV, de Oliveira PR, Kalinke C, Brazaca LC, Crapnell RD, Bonacin JA, Banks CE, Janegitz BC. Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2. BIOSENSORS 2023; 13:190. [PMID: 36831956 PMCID: PMC9954080 DOI: 10.3390/bios13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 μmol L-1 and 39.0-145 μmol L-1, and a limit of detection (LOD) of 0.70 μmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.
Collapse
Affiliation(s)
- Rodrigo Vieira Blasques
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, Brazil
| | - Paulo Roberto de Oliveira
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Cristiane Kalinke
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
| |
Collapse
|
7
|
Sun C, Huang H, Wang J, Liu W, Yang Z, Yu XF. Applications of electrochemical biosensors based on 2D materials and their hybrid composites in hematological malignancies diagnosis. Technol Cancer Res Treat 2022; 21:15330338221142996. [PMID: 36567603 PMCID: PMC9806386 DOI: 10.1177/15330338221142996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematological malignancies encompass a wide variety of severe diseases that pose a serious threat to human health. Given the fact that hematological malignancies are difficult to treat due to their unpredictable and rapid deterioration and high rates of recurrence, growing attention has been paid to their early screening and diagnosis. However, developing a rapid and effective diagnostic tool featuring a noninvasive sampling technique is still extremely challenging. In recent years, novel nanomaterials-based electrochemical biosensors have attracted great interest because of such advantages as simple operation, low cost, fast response, etc. As a kind of rising nanomaterials, two-dimensional materials have excellent electronic and chemical properties, which have been proven to improve the performance of electrochemical biosensors. This review summarizes the applications of different types of electrochemical biosensors (nucleic acid sensors, immunosensors, aptamer biosensors, and cytosensors) based on two-dimensional materials in the detection of biological molecules related to hematological malignancies. Two-dimensional materials-based electrochemical biosensors designed for the diagnosis of leukemia could rapidly detect the target biomolecules at a trace level and show great merits such as wide linear range, low detection limit, high sensitivity, excellent selectivity, and cost-effectiveness. In addition, these biosensors have also achieved satisfactory results in the diagnosis of lymphoma and multiple myeloma. Thus, two-dimensional materials-based electrochemical biosensors are attractive for the early diagnosis of hematological malignancies in clinical practice. Nevertheless, more efforts are still required to further improve the performance of electrochemical biosensors. In this review, we propose the possible main concerns in the design of future two-dimensional materials-based electrochemical biosensors, involving the development of sensors for synchronous detection of diverse target biomolecules, the exploration of other superior two-dimensional materials, the simplification of the sensors fabrication process, the construction of new hybrid structures and how to avoid possible environmental issues.
Collapse
Affiliation(s)
- Caixia Sun
- Department of Hematology, Zhanjiang Central Hospital, Guangdong
Medical University, Zhanjiang, China,Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
| | - Hao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
| | - Wenxin Liu
- Department of Hematology, Zhanjiang Central Hospital, Guangdong
Medical University, Zhanjiang, China
| | - Zhigang Yang
- Department of Hematology, Zhanjiang Central Hospital, Guangdong
Medical University, Zhanjiang, China,Zhigang Yang and Wenxin Liu, Department of
Hematology, Zhanjiang Central Hospital, Guangdong Medical University, Yuanzhu
Road, Chikan District, Zhanjiang 524045, Guangdong, China. Emails:
; Hao
Huang, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
No. 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen
518055, China.
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
| |
Collapse
|
8
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
9
|
Erkmen C, Tığ GA, Uslu B. Nanomaterial-based sandwich-type electrochemical aptasensor platform for sensitive voltammetric determination of leptin. Mikrochim Acta 2022; 189:396. [PMID: 36173490 DOI: 10.1007/s00604-022-05487-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
A sandwich-type electrochemical aptasensor was designed for sensitive detection of leptin in biological samples, including human serum and human plasma. The developed aptasensor was produced by electrodeposition of gold nanoparticles on a screen-printed electrode modified with zinc oxide nanoparticles. The synergy effect of zinc oxide and gold nanoparticles improved the electrocatalytic activity of the aptasensor. The obtained high surface area allowed more aptamer molecules to be loaded on the electrode surface. Signal amplification significantly increases the detection sensitivity of a developed biosensor. Although the use of nanomaterials is the most preferred detection tool for this purpose, as an alternative, enzyme-catalyzed signal amplification is widely used in the construction of a biosensor due to its specificity and high catalytic efficiency. Therefore, both nanomaterial-supported and an alkaline phosphatase-based aptasensor design were developed, which can produce in situ electroactive product by enzymatic hydrolysis of the inactive substrate to achieve a higher signal-to-background ratio. Under optimal conditions, the developed aptasensor exhibited a wide linear concentration range from 0.01 pg mL-1 to 100.0 pg mL-1 with a detection limit of 0.0035 pg mL-1. While the developed aptasensor provided excellent selectivity in the presence of some interfering compounds, it possessed outstanding reproducibility and stability. In addition, the developed aptasensor has been applied with good recoveries in the range 96.31 to 108.79% in human serum and plasma samples. In conclusion, all the obtained results showed the feasibility of the developed aptasensor for practical applications.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.,The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey.
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
10
|
Islam T, Ahsan MA, Hassan M, Afrin H, Pena-Zacarias J, Aldalbahi A, Alvarado-Tenorio B, Noveron JC, Nurunnabi M. Detection of Leptin Using Electrocatalyst Mediated Impedimetric Sensing. ACS Biomater Sci Eng 2022; 9:2170-2180. [PMID: 36149264 DOI: 10.1021/acsbiomaterials.2c00642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obesity is a complex disorder associated with immense health consequences including high risk of cardiovascular diseases, diabetes, and cancer. Abnormality in the thyroid gland, genetics, less physical activity, uptake of excessive diet, and leptin resistance are critical factors in the development of obesity. To determine the treatment strategy, understanding the pathophysiology of obesity is crucial. For instances, leptin resistance mediated obesity defined by the presence of excessive leptin hormone (Lep) in the systemic circulation is very common in diet induced obesity. Therefore, our hypothesis is that quantitative measurement of Lep from blood can help to identify individuals with Lep resistant mediated obesity and thereby guide toward a proper treatment strategy. In this work, we aim to utilize an electrochemical immunosensing platform for diagnosis of obesity by measuring the Lep content in systemic circulation. A porous carbon confined FeNi bimetallic system was synthesized with three different ratios of Fe and Ni ions using high temperature pyrolysis technique. The suitability of the sensor for detecting Lep was studied using both CV and EIS techniques. The limit of detection (LOD) for GCE was recorded as 157.4 fg/mL with a wide linear concentration range of 500 fg/mL to 80 ng/mL, while for SPCE the LOD was 184.9 fg/mL with a linear range of 500 fg/mL to 50 ng/mL. Finally, the feasibility and applicability of the sensor for Lep detection was tested with serum collected from high fat diet induced obese rats. The selectivity, sensitivity, storage, and experimental stability and reproducibility tests showed potential for this biosensor platform as a point-of-care Lep detection device.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Masud Hassan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Humayra Afrin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Jaqueline Pena-Zacarias
- Biological Sciences Program, College of Science, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bonifacio Alvarado-Tenorio
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32315, Mexico
| | - Juan C Noveron
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States.,Aerospace Center (cSETR), University of Texas at El Paso, El Paso, Texas 79965, United States.,Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| |
Collapse
|
11
|
Square wave voltammetric approach to leptin immunosensing and optimization of driving parameters with chemometrics. Biosens Bioelectron 2022; 216:114592. [PMID: 35969964 DOI: 10.1016/j.bios.2022.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Square wave voltammetry serves as an effective analytical means to evaluate antigen-antibody coupling at the solid-liquid interface. Herein, we describe 3-aminopropyltrimethoxysilane (APTMS) induced irreversible immobilization of anti-leptin to micellar gold nanoparticles (AuNPs). Antibodies (Abs) were orthogonally loaded on micellized AuNP assemblies via amino residual groups. The ratio of bound Ab molecules was determined by the Bradford assay. The AuNP/Ab layer modified electrodes with variable antibody surface coverage (∼400 ± 55-200 ± 30 Ab/NP) were analyzed in terms of change in backward, net current (Ip) components. The rate of antigen coupling was found to be consistent with the variation in antibody density as well as the binding affinity. The lowest detection limit was observed at the femtomolar level (0.25 fM/mL) over a wide range of antigen concentration (6.2 ng/mL to 0.12 fg/mL). The variables affecting the epitope-paratope interaction were further optimized using a chemometric approach and a response surface methodology (RSM).
Collapse
|
12
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|
13
|
A Point-of-Care Device for Fully Automated, Fast and Sensitive Protein Quantification via qPCR. BIOSENSORS 2022; 12:bios12070537. [PMID: 35884340 PMCID: PMC9313270 DOI: 10.3390/bios12070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
This paper presents a fully automated point-of-care device for protein quantification using short-DNA aptamers, where no manual sample preparation is needed. The device is based on our novel aptamer-based methodology combined with real-time polymerase chain reaction (qPCR), which we employ for very sensitive protein quantification. DNA amplification through qPCR, sensing and real-time data processing are seamlessly integrated into a point-of-care device equipped with a disposable cartridge for automated sample preparation. The system’s modular nature allows for easy assembly, adjustment and expansion towards a variety of biomarkers for applications in disease diagnostics and personalised medicine. Alongside the device description, we also present a new algorithm, which we named PeakFluo, to perform automated and real-time quantification of proteins. PeakFluo achieves better linearity than proprietary software from a commercially available qPCR machine, and it allows for early detection of the amplification signal. Additionally, we propose an alternative way to use the proposed device beyond the quantitative reading, which can provide clinically relevant advice. We demonstrate how a convolutional neural network algorithm trained on qPCR images can classify samples into high/low concentration classes. This method can help classify obese patients from their leptin values to optimise weight loss therapies in clinical settings.
Collapse
|
14
|
Yin Z, Liu C, Yi Y, Wu H, Fu X, Yan Y. A label-free electrochemical immunosensor based on PdPtCu@BP bilayer nanosheets for point-of-care kidney injury molecule-1 testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hu X, Tang Y, Xia Y, Liu Y, Zhao F, Zeng B. Antifouling ionic liquid doped molecularly imprinted polymer-based ratiometric electrochemical sensor for highly stable and selective detection of zearalenone. Anal Chim Acta 2022; 1210:339884. [DOI: 10.1016/j.aca.2022.339884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 02/09/2023]
|
16
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
17
|
Uludağ İ, Sezgintürk MK. A direct and simple immobilization route for immunosensors by CNBr activation for covalent attachment of anti-leptin: obesity diagnosis point of view. 3 Biotech 2022; 12:33. [PMID: 35070623 PMCID: PMC8724356 DOI: 10.1007/s13205-021-03096-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
Leptin is a peptide hormone produced in adipose tissue that works as an antiobesity hormone by balancing energy intake and expenditure. We aimed to develop an ultrasensitive electrochemical immunosensor based on a novel immobilization technique for the early detection of leptin-related diseases in this work. Although several methods for immobilizing antibodies to the biosensor recognition element are known, it is necessary to utilize novel, cost-effective, and less complicated immobilization procedures. When compared with currently utilized immobilization techniques for leptin measurement, this novel method is more efficient, easy to prepare, and sensitive, with a broad detection range. Indium tin oxide-coated polyethylene terephthalate (ITO-PET) sheets were used as the working electrode. ITO-PET sheets were modified using cyanogen bromide (CNBr) to immobilize the anti-leptin antibody through covalent interactions. Each stage of the proposed biosensors was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods, and extensive characterization studies were carried out. The designed biosensor has a wide linear detection range (0.05-100 pg/mL), low limits of detection (LOD) (0.0086 pg/mL) and quantification (LOQ) (0.0287 pg/mL). It was concluded that although it is disposable, the ITO-PET working electrode retains its activity even in repeated studies. In addition, the new immobilization procedure provided by CNBr for the designed biosensor fabrication can be effectively used in other biosensing applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03096-w.
Collapse
Affiliation(s)
- İnci Uludağ
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
18
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
19
|
Zhang X, Liao X, Wu Y, Xiong W, Du J, Tu Z, Yang W, Wang D. A sensitive electrochemical immunosensing interface for label-free detection of aflatoxin B 1 by attachment of nanobody to MWCNTs-COOH@black phosphorene. Anal Bioanal Chem 2021; 414:1129-1139. [PMID: 34719746 DOI: 10.1007/s00216-021-03738-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
A label-free electrochemical immunosensor has advantages of real-time and rapid detection, but it is weak in detection of small molecular toxins such as aflatoxin B1 (AFB1). The greatest obstacle to achieving this is that small molecules bound to a common immunosensing interface cannot interfere with electron transfer effectively and the detection signal is so weak. Therefore, a sensitive electrochemical immunosensing interface for small molecules is urgently needed. Here, we employed functionalized black phosphorene (BP) as electrode modification materials and anti-AFB1 nanobody (Nb) as a biorecognition element to construct a very sensitive immunosensing interface towards small molecular AFB1. The BP functionalized by carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) via P-C bonding behaved with a satisfactory stability and good catalytic performance for the ferricyanide/ferrocyanide probe, while the small-sized Nb showed good compatibility with the functionalized BP and also had less influence on electron transfer than monoclonal antibody (mAb). Expectedly, the as-prepared immunosensing interface was very sensitive to AFB1 detection by differential pulse voltammetry (DPV) in a redox probe system. Under optimized conditions, a linear range from 1.0 pM to 5.0 nM and an ultralow detection limit of 0.27 pM were obtained. Additionally, the fabricated immunosensor exhibited satisfactory stability, specificity, and reproducibility. The strategy proposed here provides a more reliable reference for label-free sensing of small molecules in food samples.
Collapse
Affiliation(s)
- Xue Zhang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaoning Liao
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongfa Wu
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanming Xiong
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Juan Du
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Wuying Yang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Dan Wang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China.
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
20
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
21
|
Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Tapia MA, Gusmão R, Serrano N, Sofer Z, Ariño C, Díaz-Cruz JM, Esteban M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
24
|
Li Q, Wu JT, Liu Y, Qi XM, Jin HG, Yang C, Liu J, Li GL, He QG. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal Chim Acta 2021; 1170:338480. [PMID: 34090586 DOI: 10.1016/j.aca.2021.338480] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of liquid-phase-exfoliated black phosphorus (BP) as a field-effect transistor in 2014, BP, with its 2D layered structure, has attracted significant attention, owing to its anisotropic electroconductivity, tunable direct bandgap, extraordinary surface activity, moderate switching ratio, high hole mobility, good biocompatibility, and biodegradability. Several pioneering research efforts have explored the application of BP in different types of electrochemical sensors. This review summarizes the latest synthesis methods, protection strategies, and electrochemical sensing applications of BP and its derivatives. The typical synthesis methods for BP-based crystals, nanosheets, and quantum dots are discussed in detail; the degradation of BP under ambient conditions is introduced; and state-of-the-art protection methodologies for enhancing BP stability are explored. Various electrochemical sensing applications, including chemically modified electrodes, electrochemiluminescence sensors, enzyme electrodes, electrochemical aptasensors, electrochemical immunosensors, and ion-selective electrodes are discussed in detail, along with the mechanisms of BP functionalization, sensing strategies, and sensing properties. Finally, the major challenges in this field are outlined and future research avenues for BP-based electrochemical sensors are highlighted.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jing-Tao Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Man Qi
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hong-Guang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chun Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guang-Li Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Quan-Guo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
25
|
Cavallo FR, Mirza KB, de Mateo S, Nikolic K, Rodriguez-Manzano J, Toumazou C. Aptasensor for Quantification of Leptin Through PCR Amplification of Short DNA-Aptamers. ACS Sens 2021; 6:709-715. [PMID: 33650854 DOI: 10.1021/acssensors.0c02605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein quantification is traditionally performed through enzyme-linked immunosorbent assay (ELISA), which involves long preparation times. To overcome this, new approaches use aptamers as an alternative to antibodies. In this paper, we present a new approach to quantify proteins with short DNA aptamers through polymerase chain reaction (PCR) resulting in shorter protocol times with comparatively improved limits of detection. The proposed method includes a novel way to quantify both the target protein and the corresponding short DNA-aptamers simultaneously, which also allows us to fully characterize the performance of aptasensors. Human leptin is used as a target protein to validate this technique, because it is considered an important biomarker for obesity-related studies. In our experiments, we achieved the lowest limit of detection of 100 pg/mL within less than 2 h, a limit affected by the dissociation constant of the leptin aptamer, which could be improved by selecting a more specific aptamer. Because of the simple and inexpensive approach, this technique can be employed for Lab-On-Chip implementations and for rapid "on-site" quantification of proteins.
Collapse
Affiliation(s)
| | - Khalid B. Mirza
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sara de Mateo
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Konstantin Nikolic
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- School of Computing and Engineering, University of West London, London W5 5RF, United Kingdom
| | - Jesus Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christofer Toumazou
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
26
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
27
|
Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Mikrochim Acta 2020; 187:636. [PMID: 33141322 DOI: 10.1007/s00604-020-04606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 01/28/2023]
Abstract
A novel chiral sensing platform, 6-O-α-maltosyl-β-cyclodextrin (Mal-βCD)-based film, is proposed for selective electrochemical recognition of tyrosine (Tyr) enantiomers. Black phosphorus nanosheets (BP NSs) and Mal-βCD modified glassy carbon electrode (Mal-βCD/BP NSs/GCE) were prepared by a layer-to-layer drop-casting method, and the platform was easy to fabricate and facile to operate. It is proposed that the amino and hydroxyl groups of the Tyr enantiomers and the chiral hydroxyl groups of Mal-βCD selectively form intermolecular hydrogen bonds to dominate effective chiral recognition. Two linear equations of Ip (μA) = 11.40 CL-Tyr (mM) + 0.28 (R2 = 0.99147) and Ip (μA) = 7.96 CD-Tyr (mM) + 0.22 (R2 = 0.99583) in the concentration range 0.01-1.00 mM have been obtained. The limits of detection (S/N=3) for L-Tyr and D-Tyr were 4.81 and 6.89 µM, respectively. An interesting phenomenon was that the value of IL-Tyr/ID-Tyr (1.51) in this work was slightly higher than the value of IL-Trp/ID-Trp (1.49) reported in our previous study, where tryptophan (Trp) enantiomers were electrochemically recognized by Nafion (NF)-stabilized BPNSs-G2-β-CD composite. The two similar sensors fabricated by different methods showed different recognition ability toward either Tyr or Trp enantiomers, and the underlying mechanism was discussed in detail. More importantly, the proposed chiral sensor enables prediction of the percentages of D-Tyr in racemic Tyr mixtures. The chiral sensor may provide a novel approach for the fabrication of novel chiral platforms in the practical detection of L- or D-enantiomer in racemic Tyr mixtures.Graphical abstract.
Collapse
|
28
|
Lu Y, Zhong L, Tang L, Wang H, Yang Z, Xie Q, Feng H, Jia M, Fan C. Extracellular electron transfer leading to the biological mediated production of reduced graphene oxide. CHEMOSPHERE 2020; 256:127141. [PMID: 32470738 DOI: 10.1016/j.chemosphere.2020.127141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
To explore a green, low-cost, and efficient strategy to synthesis reduced graphene oxide (RGO), the process and mechanism of the graphene oxide (GO) reduction by a model electrochemically active bacteria (EAB), Geobacter sulfurreducens PCA, were studied. In this work, up to 1.0 mg mL-1 of GO was reduced by G. sulfurreducens within 0.5-8 days. ID/IG ratio in reduced product was similar to chemically RGO. After microbial reduction, the peak which corresponded to the reflection of graphene oxide (001) disappeared, while another peak considered as graphite spacing (002) appeared. The peak intensity of typical oxygen function groups, such as carboxyl C-O and >O (epoxide) groups, diminished in bacterially induced RGO comparing to initial GO. Besides, we observed the doping of nitrogen and phosphorus elements in bacterially induced RGO. In a good agreement with that, better electrochemical performance was noticed after GO reduction. As confirmed with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) analysis, the maximum value of peak currents of bacterially induced RGO were significantly higher than those of GO. Our results showed the electron transfer at microbial cell/GO interface promoted the GO reduction, suggesting a broader application of EAB in biological mediated production of RGO.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Huan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
29
|
Zhang C, Du X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front Chem 2020; 8:651. [PMID: 32850664 PMCID: PMC7432198 DOI: 10.3389/fchem.2020.00651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases have become common diseases with the improvement of living standards because of changed dietary habits and living habits, which seriously affect health. Currently, related biomarkers have been widely used as important indicators for clinical diagnosis, treatment, and prognosis of metabolic diseases. Among all detection methods for biomarkers of metabolic diseases, electrochemical sensor technology has the advantages of simplicity, real-time analysis, and low cost. Carbon nanomaterials were preeminent materials for fabricating electrochemical sensors in order to enhance the performance. In this paper, we summarize the research progress in the past 3 years of electrochemical sensors based on carbon nanomaterials in detecting markers of metabolic diseases, which include carbon nanotubes, graphene, carbon quantum dots, fullerene, and carbon nitride. Additionally, we discuss the future prospects for this field.
Collapse
Affiliation(s)
- Congcong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Oliveira GCMD, Carvalho JHDS, Brazaca LC, Vieira NCS, Janegitz BC. Flexible platinum electrodes as electrochemical sensor and immunosensor for Parkinson's disease biomarkers. Biosens Bioelectron 2020; 152:112016. [DOI: 10.1016/j.bios.2020.112016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
|
31
|
Samhadaneh DM, Chu S, Maysinger D, Stochaj U. How could gold nanourchins be applied in the clinic? Nanomedicine (Lond) 2020; 15:829-832. [PMID: 32063158 DOI: 10.2217/nnm-2019-0438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dana M Samhadaneh
- Department of Physiology, McGill University, Montreal, QC, H3G, Canada
| | - Siwei Chu
- Department of Physiology, McGill University, Montreal, QC, H3G, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, H3G, Canada
| |
Collapse
|
32
|
Xie Y, Gao F, Tu X, Ma X, Dai R, Peng G, Yu Y, Lu L. Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113468] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|