1
|
Tárraga WA, Cathcarth M, Picco AS, Longo GS. Silica-binding peptides: physical chemistry and emerging biomaterials applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:203001. [PMID: 40153945 DOI: 10.1088/1361-648x/adc6e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Silica-binding peptides (SBPs) are increasingly recognized as versatile tools for various applications spanning biosensing, biocatalysis, and environmental remediation. This review explores the interaction between these peptides and silica surfaces, offering insights into how variables such as surface silanol density, peptide sequence and composition, and solution conditions influence binding affinity. Key advancements in SBP applications are discussed, including their roles in protein purification, biocatalysis, biosensing, and biomedical engineering. By examining the underlying binding mechanisms and exploring their practical potential, this work provides a comprehensive understanding of how SBPs can drive innovations in materials science and biotechnology.
Collapse
Affiliation(s)
- Wilson A Tárraga
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
2
|
Lee UJ, Oh Y, Kwon OS, Park JM, Cho HM, Kim DH, Kim M. Single-Cell Detection of Erwinia amylovora Using Bio-Functionalized SIS Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7400. [PMID: 37687855 PMCID: PMC10490433 DOI: 10.3390/s23177400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Herein, we developed a bio-functionalized solution-immersed silicon (SIS) sensor at the single-cell level to identify Erwinia amylovora (E. amylovora), a highly infectious bacterial pathogen responsible for fire blight, which is notorious for its rapid spread and destructive impact on apple and pear orchards. This method allows for ultra-sensitive measurements without pre-amplification or labeling compared to conventional methods. To detect a single cell of E. amylovora, we used Lipopolysaccharide Transporter E (LptE), which is involved in the assembly of lipopolysaccharide (LPS) at the surface of the outer membrane of E. amylovora, as a capture agent. We confirmed that LptE interacts with E. amylovora via LPS through in-house ELISA analysis, then used it to construct the sensor chip by immobilizing the capture molecule on the sensor surface modified with 3'-Aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The LptE-based SIS sensor exhibited the sensitive and specific detection of the target bacterial cell in real time. The dose-response curve shows a linearity (R2 > 0.992) with wide dynamic ranges from 1 to 107 cells/mL for the target bacterial pathogen. The sensor showed the value change (dΨ) of approximately 0.008° for growing overlayer thickness induced from a single-cell E. amylovora, while no change in the control bacterial cell (Bacillus subtilis) was observed, or negligible change, if any. Furthermore, the bacterial sensor demonstrated a potential for the continuous detection of E. amylovora through simple surface regeneration, enabling its reusability. Taken together, our system has the potential to be applied in fields where early symptoms are not observed and where single-cell or ultra-sensitive detection is required, such as plant bacterial pathogen detection, foodborne pathogen monitoring and analysis, and pathogenic microbial diagnosis.
Collapse
Affiliation(s)
- Ui Jin Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| | - Yunkwang Oh
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Hyun Mo Cho
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Dong Hyung Kim
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Moonil Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| |
Collapse
|
3
|
Normal-incidence type solution immersed silicon (SIS) biosensor for ultra-sensitive, label-free detection of cardiac troponin I. Biosens Bioelectron 2020; 168:112525. [PMID: 32858415 DOI: 10.1016/j.bios.2020.112525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023]
Abstract
Early diagnosis of acute myocardial infarction (AMI) significantly reduce the mortality rate and can be achieved via high-sensitive detection of AMI specific cardiac troponin I (cTnI) biomarker. Here, we present normal-incident type solution-immersed silicon (NI-SIS) ellipsometric biosensor, designed for ultra-high sensitive, high-throughput, label-free detection of the target protein. The NI-SIS sensors are equipped with a specially designed prism that maintains the angle of incidence close to the Brewster angle during operation, which significantly reduces SIS noise signals induced by the refractive index fluctuations of the surrounding medium, improves the signal-to-noise ratio, in-results lowers the detection limit. We applied NI-SIS biosensor for ultra-sensitive detection of cTnI biomarkers in human serum. The optimized sensor chip fabrication and detection operation procedures are proposed. The wide linear concentration ranges of fg/mL to ng/mL is achieved with the detection limit of 22.0 fg/mL of cTnI. The analytical correlation was assessed by linear regression analysis with the results of the Pathfast reference system. These impressive biosensing capabilities of NI-SIS technology have huge potentials for accurate detection of target species in different application areas, such as diagnosis, drug discovery, and food contaminations.
Collapse
|