1
|
Zhang S, Zhang T, Wang S, Han Z, Duan X, Wang J. Phenotyping of single plant cells on a microfluidic cytometry platform with fluorescent, mechanical, and electrical modules. Analyst 2024; 149:4436-4442. [PMID: 39015957 DOI: 10.1039/d4an00682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Compared to animal cells, phenotypic characterization of single plant cells on microfluidic platforms is still rare. In this work, we collated population statistics on the morphological, biochemical, physical and electrical properties of Arabidopsis protoplasts under different external and internal conditions, using progressively improved microfluidic platforms. First, we analyzed the different effects of three phytohormones (auxin, cytokinin and gibberellin) on the primary cell wall (PCW) regeneration process using a microfluidic flow cytometry platform equipped with a single-channel fluorescence sensor. Second, we correlated the intracellular reactive oxygen species (ROS) level induced by heavy metal stress with the concurrent PCW regeneration process by using a dual-channel fluorescence sensor. Third, by integrating contraction channels, we were able to effectively discriminate variations in cell size while monitoring the intensity of intracellular ROS signaling. Fourth, by combining an electrical impedance electrode with the contraction channel, we analyzed the differences in electrical and mechanical properties of wild-type and mutant plant cells before and after primary cell wall regeneration. Overall, our work demonstrates the feasibility and sensitivity of microfluidic flow cytometry in high-throughput phenotyping of plant cells and provides a reference for assessing metabolic and physiological indicators of individual plant cells in multiple dimensions.
Collapse
Affiliation(s)
- Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Tianjiao Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Shuaiqi Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| |
Collapse
|
2
|
Yun HG, Cadierno YA, Kim TW, Muñoz-Barrutia A, Garica-Gonzalez D, Choi S. Computational Hyperspectral Microflow Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400019. [PMID: 38770741 DOI: 10.1002/smll.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Miniaturized flow cytometry has significant potential for portable applications, such as cell-based diagnostics and the monitoring of therapeutic cell manufacturing, however, the performance of current techniques is often limited by the inability to resolve spectrally-overlapping fluorescence labels. Here, the study presents a computational hyperspectral microflow cytometer (CHC) that enables accurate discrimination of spectrally-overlapping fluorophores labeling single cells. CHC employs a dispersive optical element and an optimization algorithm to detect the full fluorescence emission spectrum from flowing cells, with a high spectral resolution of ≈3 nm in the range from 450 to 650 nm. CHC also includes a dedicated microfluidic device that ensures in-focus imaging through viscoelastic sheathless focusing, thereby enhancing the accuracy and reliability of microflow cytometry analysis. The potential of CHC for analyzing T lymphocyte subpopulations and monitoring changes in cell composition during T cell expansion is demonstrated. Overall, CHC represents a major breakthrough in microflow cytometry and can facilitate its use for immune cell monitoring.
Collapse
Affiliation(s)
- Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoel Alonso Cadierno
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Tae Won Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Daniel Garica-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Yang G, Gao C, Chen D, Wang J, Huo X, Chen J. Multiplex fluorescence detection of single-cell droplet microfluidics and its application in quantifying protein expression levels. BIOMICROFLUIDICS 2023; 17:064106. [PMID: 38162228 PMCID: PMC10754627 DOI: 10.1063/5.0179121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
This study presented a platform of multiplex fluorescence detection of single-cell droplet microfluidics with demonstrative applications in quantifying protein expression levels. The platform of multiplex fluorescence detection mainly included optical paths adopted from conventional microscopy enabling the generation of three optical spots from three laser sources for multiple fluorescence excitation and capture of multiple fluorescence signals by four photomultiplier tubes. As to platform characterization, microscopic images of three optical spots were obtained where clear Gaussian distributions of intensities without skewness confirmed the functionality of the scanning lens, while the controllable distances among three optical spots validated the functionality of fiber collimators and the reflector lens. As to demonstration, this platform was used to quantify single-cell protein expression within droplets where four-type protein expression of α-tubulin, Ras, c-Myc, and β-tubulin of CAL 27 (Ncell = 1921) vs WSU-HN6 (Ncell = 1881) were quantitatively estimated, which were (2.85 ± 0.72) × 105 vs (4.83 ± 1.58) × 105, (3.69 ± 1.41) × 104 vs (5.07 ± 2.13) × 104, (5.90 ± 1.45) × 104 vs (9.57 ± 2.85) × 104, and (3.84 ± 1.28) × 105 vs (3.30 ± 1.10) × 105, respectively. Neural pattern recognition was utilized for the classification of cell types, achieving successful rates of 69.0% (α-tubulin), 75.4% (Ras), 89.1% (c-Myc), 65.8% (β-tubulin), and 99.1% in combination, validating the capability of this platform of multiplex fluorescence detection to quantify various types of single-cell proteins, which could provide comprehensive evaluations on cell status.
Collapse
Affiliation(s)
| | | | | | - Junbo Wang
- Authors to whom correspondence should be addressed:; ; and
| | - Xiaoye Huo
- Authors to whom correspondence should be addressed:; ; and
| | - Jian Chen
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
4
|
Gao C, Zhang T, Wei Y, Liu Q, Ma L, Gao M, Zhao X, Wang Y, Chen D, Sun L, Wang J, Chen J. Development of a Microfluidic Flow Cytometer with a Uniform Optical Field (Uni-μFCM) Enabling Quantitative Analysis of Single-Cell Proteins and Its Applications in Leukemia Gating, Tumor Classification, and Hierarchy of Cancer Stem Cells. ACS Sens 2023; 8:3498-3509. [PMID: 37602731 PMCID: PMC10521140 DOI: 10.1021/acssensors.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Fast and quantitative estimation of single-cell proteins with various distribution patterns remains a technical challenge. Here, a microfluidic flow cytometer with a uniform optical field (Uni-μFCM) was developed, which enabled the translation of multicolor fluorescence signals of bound antibodies into targeted protein numbers with arbitrary distributions of biological cells. As the core of Uni-μFCM, a uniform optical field for optical excitation and fluorescence detection was realized by adopting a microfabricated metal window to shape the optical beam for excitation, which was modeled and validated by both numerical simulation and experimental characterization. After the validation of Uni-μFCM in single-cell protein quantification by measuring single-cell expressions of three transcriptional factors from four cell lines of variable sizes and origins, Uni-μFCM was applied to (1) quantify membrane and cytoplasmic markers of myeloid and lymphocytic leukocytes to classify cell lines and normal and patient blood samples; (2) measure single-cell expressions of key cytokines affiliated with gene stabilities, differentiating paired oral and colon tumor cell lines with varied malignancies, and (3) quantify single-cell stemming markers of liver tumor cell lines, cell subtypes, and liver patient samples to determine a variety of lineage hierarchy. By quantitatively assessing complex cellular phenotypes, Uni-μFCM substantially expanded the phenotypic space accessible to single-cell applications in leukemia gating, tumor classification, and hierarchy determination of cancer stem cells.
Collapse
Affiliation(s)
- Chiyuan Gao
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
| | - Ting Zhang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
| | - Yuanchen Wei
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Qinghua Liu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Liangliang Ma
- State
Key Laboratory of Molecular Oncology,National
Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing100021, People’s Republic
of China
| | - Mengge Gao
- Peking
University People’s Hospital, Peking University Institute of
Hematology, National Clinical Research Center for Hematologic Disease,
Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing100044, People’s Republic of China
| | - Xiaosu Zhao
- Peking
University People’s Hospital, Peking University Institute of
Hematology, National Clinical Research Center for Hematologic Disease,
Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing100044, People’s Republic of China
| | - Yixiang Wang
- Peking
University
Hospital of Stomatology, Beijing100081, People’s
Republic of China
| | - Deyong Chen
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Lichao Sun
- State
Key Laboratory of Molecular Oncology,National
Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing100021, People’s Republic
of China
| | - Junbo Wang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jian Chen
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
5
|
Ho V, Baker JR, Willison KR, Barnes PJ, Donnelly LE, Klug DR. Single cell quantification of microRNA from small numbers of non-invasively sampled primary human cells. Commun Biol 2023; 6:458. [PMID: 37100999 PMCID: PMC10133449 DOI: 10.1038/s42003-023-04845-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Expression levels of microRNAs (miRNAs) in single cells are low and conventional miRNA detection methods require amplification that can be complex, time-consuming, costly and may bias results. Single cell microfluidic platforms have been developed; however, current approaches are unable to absolutely quantify single miRNA molecules expressed in single cells. Herein, we present an amplification-free sandwich hybridisation assay to detect single miRNA molecules in single cells using a microfluidic platform that optically traps and lyses individual cells. Absolute quantification of miR-21 and miR-34a molecules was achieved at a single cell level in human cell lines and validated using real-time qPCR. The sensitivity of the assay was demonstrated by quantifying single miRNA molecules in nasal epithelial cells and CD3+ T-cells, as well as nasal fluid collected non-invasively from healthy individuals. This platform requires ~50 cells or ~30 µL biofluid and can be extended for other miRNA targets therefore it could monitor miRNA levels in disease progression or clinical studies.
Collapse
Affiliation(s)
- Vanessa Ho
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Keith R Willison
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK.
| | - David R Klug
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| |
Collapse
|
6
|
Zhang T, Chen X, Chen D, Wang J, Chen J. Development of constrictional microchannels and the recurrent neural network in single-cell protein analysis. Front Bioeng Biotechnol 2023; 11:1195940. [PMID: 37207125 PMCID: PMC10190128 DOI: 10.3389/fbioe.2023.1195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: As the golden approach of single-cell analysis, fluorescent flow cytometry can estimate single-cell proteins with high throughputs, which, however, cannot translate fluorescent intensities into protein numbers. Methods: This study reported a fluorescent flow cytometry based on constrictional microchannels for quantitative measurements of single-cell fluorescent levels and the recurrent neural network for data analysis of fluorescent profiles for high-accuracy cell-type classification. Results: As a demonstration, fluorescent profiles (e.g., FITC labeled β-actin antibody, PE labeled EpCAM antibody and PerCP labeled β-tubulin antibody) of individual A549 and CAL 27 cells were firstly measured and translated into protein numbers of 0.56 ± 0.43 × 104, 1.78 ± 1.06 × 106 and 8.11 ± 4.89 × 104 of A549 cells (ncell = 10232), and 3.47 ± 2.45 × 104, 2.65 ± 1.19 × 106 and 8.61 ± 5.25 × 104 of CAL 27 cells (ncell = 16376) based on the equivalent model of the constrictional microchannel. Then, the feedforward neural network was used to process these single-cell protein expressions, producing a classification accuracy of 92.0% for A549 vs. CAL 27 cells. In order to further increase the classification accuracies, as a key subtype of the recurrent neural network, the long short-term memory (LSTM) neural network was adopted to process fluorescent pulses sampled in constrictional microchannels directly, producing a classification accuracy of 95.5% for A549 vs. CAL 27 cells after optimization. Discussion: This fluorescent flow cytometry based on constrictional microchannels and recurrent neural network can function as an enabling tool of single-cell analysis and contribute to the development of quantitative cell biology.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| |
Collapse
|
7
|
Zhang T, Gao M, Chen X, Gao C, Feng S, Chen D, Wang J, Zhao X, Chen J. Demands and technical developments of clinical flow cytometry with emphasis in quantitative, spectral, and imaging capabilities. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the gold-standard method for single-cell analysis, flow cytometry enables high-throughput and multiple-parameter characterization of individual biological cells. This review highlights the demands for clinical flow cytometry in laboratory hematology (e.g., diagnoses of minimal residual disease and various types of leukemia), summarizes state-of-the-art clinical flow cytometers (e.g., FACSLyricTM by Becton Dickinson, DxFLEX by Beckman Coulter), then considers innovative technical improvements in flow cytometry (including quantitative, spectral, and imaging approaches) to address the limitations of clinical flow cytometry in hematology diagnosis. Finally, driven by these clinical demands, future developments in clinical flow cytometry are suggested.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Mengge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, People’s Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chiyuan Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaosu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, People’s Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
8
|
Yang G, Yang H, Zhang T, Gao C, Chen D, Wang J, Chen J. Quantitative flow cytometry leveraging
droplet‐based
constriction microchannels with high reliability and high sensitivity. Cytometry A 2022; 103:429-438. [PMID: 36420790 DOI: 10.1002/cyto.a.24705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
This study presented a quantitative flow cytometry leveraging droplet-based constriction microchannels with high reliability and high sensitivity. Droplets encapsulating single cells and even distribution of fluorescein labeled antibodies removed from targeted cells deformed through the constriction microchannel where the excited fluorescent signals were sampled and interpreted into numbers of proteins based on volume equivalence in measurement of droplets and calibration of fluorescence. To improve the detection reliability, a comprehensive analysis and comparison of multiple stripping agents such as proteinase K, guanidine hydrochloride, and urea was conducted. To improve the detection sensitivity, light modulation was used to address electrical noises and quartz microchannels were fabricated to address optical noises. As a demonstration, based on this quantitative flow cytometry of droplet microfluidics, (1) mutant p53 expressions of single cells were quantified as 1.95 ± 0.60 × 105 (ncell = 2918 of A431) and 1.30 ± 0.70 × 105 (ncell = 3954 of T47D); (2) single-cell expressions of Ras, c-Myc, and β-tubulin were quantified as 1.90 ± 0.59 × 105 , 4.39 ± 1.44 × 105 , and 2.97 ± 0.81 × 105 (ncell = 3298 of CAL 27), 1.83 ± 0.58 × 105 , 2.08 ± 0.13 × 106 , and 1.96 ± 0.74 × 105 (ncell = 5459 of WSU-HN6). As a microfluidic tool capable of quantitatively estimating single-cell protein expressions, this methodology may provide a new quantitative perspective for the field of flow cytometry.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
| | - Hongyu Yang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Ting Zhang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Chiyuan Gao
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Jian Chen
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Liu Y, Fan Z, Qiao L, Liu B. Advances in microfluidic strategies for single-cell research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Wei J, Zhao Z, Lan K, Wang Z, Qin G, Chen R. Highly sensitive detection of multiple proteins from single cells by MoS 2-FET biosensors. Talanta 2022; 236:122839. [PMID: 34635229 DOI: 10.1016/j.talanta.2021.122839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Single-cell analysis of proteins is critical to gain precise information regarding the mechanisms that dictate the heterogeneity in cellular phenotypes and their differential response to internal and external stimuli. However, tools that allow sensitive and easy measurement of proteins in individual cells are still limited. The emerging semiconductor-based bioelectronics may provide a new approach to overcome the challenges in this field, however its utility in single-cell protein analysis has not been explored. In this study, we investigated multiple protein detection in single cells by MoS2 field effect transistors (MoS2-FETs) modified with specific biological probes. First, β-actin antibody was connected to the surface of MoS2-FETs by covalent bonds, and the fabricated device was tested using β-actin solution with concentrations from 10-9 to 10-3 μg/μL. Next, we examined the application of MoS2-FET for protein analysis in complex biological samples, and the device showed electrical signal response to human embryonic kidney cell line HEK293T in a dose-dependent manner. Furthermore, we applied this method to analyze individual liver cancer MHCC-97L cells, targeting four cellular proteins, including β-actin, epidermal growth factor receptor, sirtuin-2, and glyceraldehyde-3-phosphate dehydrogenase. The devices modified with corresponding probes could identify the target proteins and showed cell number-dependent responses. As a proof of principle, we demonstrated sensitive and multiplexed detection of proteins in single cells using MoS2-FETs. The biosensor and this detection method are cost-efficient and user-friendly with broad application prospects in biological studies and clinical diagnosis.
Collapse
Affiliation(s)
- Junqing Wei
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhihan Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Kuibo Lan
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhi Wang
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Guoxuan Qin
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
11
|
Pan D, Jia D. Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Front Mol Biosci 2021; 8:757024. [PMID: 34722635 PMCID: PMC8554142 DOI: 10.3389/fmolb.2021.757024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor heterogeneity, a hallmark of cancer, impairs the efficacy of cancer therapy and drives tumor progression. Exploring inter- and intra-tumoral heterogeneity not only provides insights into tumor development and progression, but also guides the design of personalized therapies. Previously, high-throughput sequencing techniques have been used to investigate the heterogeneity of tumor ecosystems. However, they could not provide a high-resolution landscape of cellular components in tumor ecosystem. Recently, advance in single-cell technologies has provided an unprecedented resolution to uncover the intra-tumoral heterogeneity by profiling the transcriptomes, genomes, proteomes and epigenomes of the cellular components and also their spatial distribution, which greatly accelerated the process of basic and translational cancer research. Importantly, it has been demonstrated that some cancer cells are able to transit between different states in order to adapt to the changing tumor microenvironment, which led to increased cellular plasticity and tumor heterogeneity. Understanding the molecular mechanisms driving cancer cell plasticity is critical for developing precision therapies. In this review, we summarize the recent progress in dissecting the cancer cell plasticity and tumor heterogeneity by use of single-cell multi-omics techniques.
Collapse
Affiliation(s)
- Deshen Pan
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
13
|
Liu L, Chen D, Wang J, Chen J. Advances of Single-Cell Protein Analysis. Cells 2020; 9:E1271. [PMID: 32443882 PMCID: PMC7290353 DOI: 10.3390/cells9051271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Proteins play a significant role in the key activities of cells. Single-cell protein analysis provides crucial insights in studying cellular heterogeneities. However, the low abundance and enormous complexity of the proteome posit challenges in analyzing protein expressions at the single-cell level. This review summarizes recent advances of various approaches to single-cell protein analysis. We begin by discussing conventional characterization approaches, including fluorescence flow cytometry, mass cytometry, enzyme-linked immunospot assay, and capillary electrophoresis. We then detail the landmark advances of microfluidic approaches for analyzing single-cell protein expressions, including microfluidic fluorescent flow cytometry, droplet-based microfluidics, microwell-based assay (microengraving), microchamber-based assay (barcoding microchips), and single-cell Western blotting, among which the advantages and limitations are compared. Looking forward, we discuss future research opportunities and challenges for multiplexity, analyte, throughput, and sensitivity of the microfluidic approaches, which we believe will prompt the research of single-cell proteins such as the molecular mechanism of cell biology, as well as the clinical applications for tumor treatment and drug development.
Collapse
Affiliation(s)
- Lixing Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|