1
|
Zhang X, Xu Z, Zhang Y, Wei D, Zhang S, Wang J, Ren J. Engineered molybdenum disulfide nanosheets as scavengers against oxidative stress inhibit ferroptosis to alleviate acute kidney injury. NANOSCALE 2025; 17:7460-7473. [PMID: 40008616 DOI: 10.1039/d4nr05060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Acute kidney injury (AKI) is a common clinical kidney dysfunction associated with high morbidity, elevated mortality, and poor prognosis. It results from redox imbalance caused by abnormal excess production of endogenous reactive oxygen species (ROS) at the renal tubules, which in turn initiates a series of pathological processes, such as cellular apoptosis, necrosis, and ferroptosis, eventually leading to structural and functional impairment of the kidney. Thereinto, ferroptosis induced by the lethal accumulation of lipid peroxidation is extensively involved in renal damage. Nanotechnology-mediated therapeutic strategies to scavenge excessive ROS and thereby inhibit ferroptosis represents a promising strategy for AKI management. Herein, we report two engineered ultrathin molybdenum disulfide (MoS2) nanosheets (NSs) modified with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA), respectively, with excellent biocompatibility and antioxidative defense capability for AKI treatment. The engineered NSs, with a readily variable valence state of molybdenum ions, rescued cell viability by consuming various forms of cellular ROS and significantly facilitated glutathione peroxidase 4 (GPX4) expression to mitigate ferroptosis in renal tubular epithelial cells. In a glycerol-induced AKI mouse model, the PVP-MoS2 NSs were largely accumulated in the injured kidneys, where they provided robust antioxidative protection against ROS attack and suppressed the oxidative stress-induced inflammatory response, thereby maintaining normal kidney function. Of the two engineered NSs, PVP-MoS2 displayed superior biological stability and therapeutic effects and could thus serve as a powerful antioxidant platform for use in the treatment of AKI and other ROS-associated diseases. This study underscores the potential of two-dimensional nanomaterials in precisely treating AKI and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xuwu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China.
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Zhipeng Xu
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Yongzheng Zhang
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Dan Wei
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jianning Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China.
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jiayu Ren
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
2
|
Wang Q, Zhao ZA, Yao KY, Cheng YL, Wong DSH, Wong DWC, Cheung JCW. The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring. BIOSENSORS 2025; 15:193. [PMID: 40136991 PMCID: PMC11940136 DOI: 10.3390/bios15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zi-An Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ke-Yu Yao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuk-Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Dexter Siu-Hong Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
3
|
Wang W, Du H, Dai C, Ma H, Luo S, Wang X, Guo M, Kong D, Wei D. Amplification-free detection of Mycobacterium tuberculosis using CRISPR-Cas12a and graphene field-effect transistors. NANOSCALE 2025; 17:4603-4609. [PMID: 39810563 DOI: 10.1039/d4nr03852e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Current molecular tests for tuberculosis (TB), such as whole genome sequencing and Xpert Mycobacterium tuberculosis/rifampicin resistance assay, exhibit limited sensitivity and necessitate the pre-amplification step of target DNA. This limitation greatly increases detection time and poses an increased risk of infection. Here, we present a graphene field-effect transistor (GFET) based on the CRISPR/Cas system for detecting Mycobacterium tuberculosis. The CRISPR/Cas12a system has the ability to specifically recognize and cleave target DNA. By integrating the system onto the FET platform and utilizing its electrical amplification capability, we achieve rapid and sensitive detection without requiring sample pre-amplification, with a limit of detection (LoD) as low as 2.42 × 10-18 M. Cas12a-GFET devices can differentiate 30 positive cases from 56 serum samples within 5 minutes. These findings highlight its immense potential in future biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Huanyu Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hongwenjie Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Ma H, Chen S, Zhang X, Sun T, Huo P, Cui X, Man B, Yang C, Wei D. Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection. NANO LETTERS 2024; 24:16245-16252. [PMID: 39660777 DOI: 10.1021/acs.nanolett.4c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.
Collapse
Affiliation(s)
- Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, People's Republic of China
| | - Dongmei Wei
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
6
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
8
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
9
|
Zhang X, Chen S, Ma H, Sun T, Cui X, Huo P, Man B, Yang C. Asymmetric Schottky Barrier-Generated MoS 2/WTe 2 FET Biosensor Based on a Rectified Signal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:226. [PMID: 38276744 PMCID: PMC10820193 DOI: 10.3390/nano14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.
Collapse
Affiliation(s)
- Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Le PG, Choi SH, Cho S. Alzheimer's Disease Biomarker Detection Using Field Effect Transistor-Based Biosensor. BIOSENSORS 2023; 13:987. [PMID: 37998162 PMCID: PMC10669709 DOI: 10.3390/bios13110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's disease (AD) is closely related to neurodegeneration, leading to dementia and cognitive impairment, especially in people aged > 65 years old. The detection of biomarkers plays a pivotal role in the diagnosis and treatment of AD, particularly at the onset stage. Field-effect transistor (FET)-based sensors are emerging devices that have drawn considerable attention due to their crucial ability to recognize various biomarkers at ultra-low concentrations. Thus, FET is broadly manipulated for AD biomarker detection. In this review, an overview of typical FET features and their operational mechanisms is described in detail. In addition, a summary of AD biomarker detection and the applicability of FET biosensors in this research field are outlined and discussed. Furthermore, the trends and future prospects of FET devices in AD diagnostic applications are also discussed.
Collapse
Affiliation(s)
- Phan Gia Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
- Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
11
|
Gubeljak P, Xu T, Pedrazzetti L, Burton OJ, Magagnin L, Hofmann S, Malliaras GG, Lombardo A. Electrochemically-gated graphene broadband microwave waveguides for ultrasensitive biosensing. NANOSCALE 2023; 15:15304-15317. [PMID: 37682040 DOI: 10.1039/d3nr01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the graphene surface, and the sensor is exposed to DNA sequences which either perfectly match the probe, contain a single-base mismatch or are unrelated. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz, unambiguous and reproducible discrimination of the different strands is achieved at concentrations as low as one attomole per litre (1 aM). By controlling and synchronising frequency sweeps, electrochemical gating, and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets. Advanced data analysis techniques are utilised to take full advantage of the richness of the dataset. A classification accuracy >97% between all three sequences is achieved using different Machine Learning models, even in the presence of simulated noise and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity of field-effect transistors and microwave sensors for the identification of single-base mismatches.
Collapse
Affiliation(s)
- Patrik Gubeljak
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
| | - Tianhui Xu
- Department of Engineering, University of Cambridge, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
| | - Lorenzo Pedrazzetti
- Department of Engineering, University of Cambridge, UK
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Italy
| | | | - Luca Magagnin
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Italy
| | | | | | - Antonio Lombardo
- Department of Engineering, University of Cambridge, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
- London Centre for Nanotechnology, University College London, UK.
| |
Collapse
|
12
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
13
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
14
|
Ghasemi F, Salimi A. Advances in 2d Based Field Effect Transistors as Biosensing Platforms: From Principle to Biomedical Applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Azeem MM, Shafa M, Aamir M, Zubair M, Souayeh B, Alam MW. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front Bioeng Biotechnol 2023; 11:1117871. [PMID: 36937765 PMCID: PMC10018150 DOI: 10.3389/fbioe.2023.1117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent pandemic has led to the fabrication of new nucleic acid sensors that can detect infinitesimal limits immediately and effectively. Therefore, various techniques have been demonstrated using low-dimensional materials that exhibit ultrahigh detection and accuracy. Numerous detection approaches have been reported, and new methods for impulse sensing are being explored. All ongoing research converges at one unique point, that is, an impetus: the enhanced limit of detection of sensors. There are several reviews on the detection of viruses and other proteins related to disease control point of care; however, to the best of our knowledge, none summarizes the various nucleotide sensors and describes their limits of detection and mechanisms. To understand the far-reaching impact of this discipline, we briefly discussed conventional and nanomaterial-based sensors, and then proposed the feature prospects of these devices. Two types of sensing mechanisms were further divided into their sub-branches: polymerase chain reaction and photospectrometric-based sensors. The nanomaterial-based sensor was further subdivided into optical and electrical sensors. The optical sensors included fluorescence (FL), surface plasmon resonance (SPR), colorimetric, and surface-enhanced Raman scattering (SERS), while electrical sensors included electrochemical luminescence (ECL), microfluidic chip, and field-effect transistor (FET). A synopsis of sensing materials, mechanisms, detection limits, and ranges has been provided. The sensing mechanism and materials used were discussed for each category in terms of length, collectively forming a fusing platform to highlight the ultrahigh detection technique of nucleotide sensors. We discussed potential trends in improving the fabrication of nucleotide nanosensors based on low-dimensional materials. In this area, particular aspects, including sensitivity, detection mechanism, stability, and challenges, were addressed. The optimization of the sensing performance and selection of the best sensor were concluded. Recent trends in the atomic-scale simulation of the development of Deoxyribonucleic acid (DNA) sensors using 2D materials were highlighted. A critical overview of the challenges and opportunities of deoxyribonucleic acid sensors was explored, and progress made in deoxyribonucleic acid detection over the past decade with a family of deoxyribonucleic acid sensors was described. Areas in which further research is needed were included in the future scope.
Collapse
Affiliation(s)
- M. Mustafa Azeem
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Shafa
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Devices, Kunming University, Kunming, Yunnan, China
| | - Muhammad Aamir
- Department of Basic Science, Deanship of Preparatory Year, King Faisal University, Hofuf, Saudi Arabia
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Zubair
- Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
16
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Rizzato S, Monteduro AG, Leo A, Todaro MT, Maruccio G. From ion‐sensitive field‐effect transistor to 2D materials field‐effect‐transistor biosensors. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Angelo Leo
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| |
Collapse
|
18
|
Sun H, Li D, Yue X, Hong R, Yang W, Liu C, Xu H, Lu J, Dong L, Wang G, Li D. A Review of Transition Metal Dichalcogenides-Based Biosensors. Front Bioeng Biotechnol 2022; 10:941135. [PMID: 35769098 PMCID: PMC9234135 DOI: 10.3389/fbioe.2022.941135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metal dichalcogenides (TMDCs) are widely used in biosensing applications due to their excellent physical and chemical properties. Due to the properties of biomaterial targets, the biggest challenge that biosensors face now is how to improve the sensitivity and stability. A lot of materials had been used to enhance the target signal. Among them, TMDCs show excellent performance in enhancing biosensing signals because of their metallic and semi-conducting electrical capabilities, tunable band gap, large specific surface area and so on. Here, we review different functionalization methods and research progress of TMDCs-based biosensors. The modification methods of TMDCs for biosensor fabrication mainly include two strategies: non-covalent and covalent interaction. The article summarizes the advantages and disadvantages of different modification strategies and their effects on biosensing performance. The authors present the challenges and issues that TMDCs need to be addressed in biosensor applications. Finally, the review expresses the positive application prospects of TMDCs-based biosensors in the future.
Collapse
Affiliation(s)
- Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Dongyang Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| |
Collapse
|
19
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Sadighbayan D, Minhas-Khan A, Ghafar-Zadeh E. Laser-Induced Graphene-Functionalized Field-Effect Transistor-Based Biosensing: A Potent Candidate for COVID-19 Detection. IEEE Trans Nanobioscience 2022; 21:232-245. [PMID: 34648455 PMCID: PMC9088816 DOI: 10.1109/tnb.2021.3119996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Speedy and on-time detection of coronavirus disease 2019 (COVID-19) is of high importance to control the pandemic effectively and stop its disastrous consequences. A widely available, reliable, label-free, and rapid test that can recognize tiny amounts of specific biomarkers might be the solution. Nanobiosensors are one of the most attractive candidates for this purpose. Integration of graphene with biosensing devices shifts the performance of these systems to an incomparable level. Between the various arrangements using this wonder material, field-effect transistors (FETs) display a precise detection even in complex samples. The emergence of pioneering biosensors for detecting a wide range of diseases especially COVID-19 created the incentive to prepare a review of the recent graphene-FET biosensing platforms. However, the graphene fabrication and transfer to the surface of the device is an imperative factor for researchers to take into account. Therefore, we also reviewed the common methods of manufacturing graphene for biosensing applications and discuss their advantages and disadvantages. One of the most recent synthesizing techniques - laser-induced graphene (LIG) - is attracting attention owing to its extraordinary benefits which are thoroughly explained in this article. Finally, a conclusion highlighting the current challenges is presented.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Aamir Minhas-Khan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
21
|
Gao J, Wang C, Chu Y, Han Y, Gao Y, Wang Y, Wang C, Liu H, Han L, Zhang Y. Graphene oxide-graphene Van der Waals heterostructure transistor biosensor for SARS-CoV-2 protein detection. Talanta 2022; 240:123197. [PMID: 34996016 PMCID: PMC8719368 DOI: 10.1016/j.talanta.2021.123197] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
The current outbreaking of the coronavirus SARS-CoV-2 pandemic threatens global health and has caused serious concern. Currently there is no specific drug against SARS-CoV-2, therefore, a fast and accurate diagnosis method is an urgent need for the diagnosis, timely treatment and infection control of COVID-19 pandemic. In this work, we developed a field effect transistor (FET) biosensor based on graphene oxide-graphene (GO/Gr) van der Waals heterostructure for selective and ultrasensitive SARS-CoV-2 proteins detection. The GO/Gr van der Waals heterostructure was in-situ formed in the microfluidic channel through π-π stacking. The developed biosensor is capable of SARS-CoV-2 proteins detection within 20 min in the large dynamic range from 10 fg/mL to 100 pg/mL with the limit of detection of as low as ∼8 fg/mL, which shows ∼3 × sensitivity enhancement compared with Gr-FET biosensor. The performance enhancement mechanism was studied based on the transistor-based biosensing theory and experimental results, which is mainly attributed to the enhanced SARS-CoV-2 capture antibody immobilization density due to the introduction of the GO layer on the graphene surface. The spiked SARS-CoV-2 protein samples in throat swab buffer solution were tested to confirm the practical application of the biosensor for SARS-CoV-2 proteins detection. The results indicated that the developed GO/Gr van der Waals heterostructure FET biosensor has strong selectivity and high sensitivity, providing a potential method for SARS-CoV-2 fast and accurate detection.
Collapse
Affiliation(s)
- Jianwei Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yujin Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yakun Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yanhao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
22
|
Gao J, Wang C, Wang C, Chu Y, Wang S, Sun MY, Ji H, Gao Y, Wang Y, Han Y, Song F, Liu H, Zhang Y, Han L. Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Anal Chem 2022; 94:1626-1636. [PMID: 35025203 PMCID: PMC8767657 DOI: 10.1021/acs.analchem.1c03786] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
(Mi)RNAs are important biomarkers for cancers diagnosis and pandemic diseases, which require fast, ultrasensitive, and economical detection strategies to quantitatively detect exact (mi)RNAs expression levels. The novel coronavirus disease (SARS-CoV-2) has been breaking out globally, and RNA detection is the most effective way to identify the SARS-CoV-2 virus. Here, we developed an ultrasensitive poly-l-lysine (PLL)-functionalized graphene field-effect transistor (PGFET) biosensor for breast cancer miRNAs and viral RNA detection. PLL is functionalized on the channel surface of GFET to immobilize DNA probes by the electrostatic force. The results show that PGFET biosensors can achieve a (mi)RNA detection range of five orders with a detection limit of 1 fM and an entire detection time within 20 min using 2 μL of human serum and throat swab samples, which exhibits more than 113% enhancement in terms of sensitivity compared to that of GFET biosensors. The performance enhancement mechanisms of PGFET biosensors were comprehensively studied based on an electrical biosensor theoretical model and experimental results. In addition, the PGFET biosensor was applied for the breast cancer miRNA detection in actual serum samples and SARS-CoV-2 RNA detection in throat swab samples, providing a promising approach for rapid cancer diagnosis and virus screening.
Collapse
Affiliation(s)
- Jianwei Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chunhua Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yujin Chu
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Shun Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Ming yuan Sun
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hao Ji
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yakun Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yanhao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yingkuan Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Fangteng Song
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, China
| | - Yu Zhang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Lin Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| |
Collapse
|
23
|
Svyazhin A, Nalbandyan V, Rovezzi M, Chumakova A, Detlefs B, Guda AA, Santambrogio A, Manceau A, Glatzel P. Chemical Information in the L 3 X-ray Absorption Spectra of Molybdenum Compounds by High-Energy-Resolution Detection and Density Functional Theory. Inorg Chem 2021; 61:869-881. [PMID: 34957831 DOI: 10.1021/acs.inorgchem.1c02600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray spectroscopy using high-energy-resolution fluorescence detection (HERFD) has critically increased the information content in X-ray spectra. We extend this technique to the tender X-ray range and present a study at the L3-edge of molybdenum. We show how information on the oxidation state, phase composition, and local environment in molybdenum-based compounds can be obtained by analyzing the HERFD L3 X-ray absorption near-edge structure (XANES). We demonstrate that the chemical shift of the L3-edge HERFD spectra follows a parabolic dependence on the oxidation state and show that a qualitative analysis of high-resolution spectra can help to estimate parameters such as distortion of a ligand environment and radial order of atoms around the absorber. In certain cases, the spectra allow disentangling the contributions from bond lengths and angles to the distortion of the ligand polyhedron. Comparison of the high-resolution spectra with theoretical simulations shows that the single-electron approximation is able to reproduce the spectral shape. The results of this work may be useful in every branch of physics, inorganic and organometallic chemistry, catalysis, materials science, biochemistry, and mineralogy where observed changes in performance or chemical properties of Mo-based compounds, accompanied by small changes in spectral shape, are to be related to the details of electronic structure and local atomic environment.
Collapse
Affiliation(s)
- Artem Svyazhin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France.,M. N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Science, 620990 Yekaterinburg, Russia
| | - Vladimir Nalbandyan
- Chemistry Faculty, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Mauro Rovezzi
- Université Grenoble Alpes, CNRS, IRD, Irstea, Météo France, OSUG, FAME, 38000 Grenoble, France
| | - Aleksandra Chumakova
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Blanka Detlefs
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Alessandro Santambrogio
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| |
Collapse
|
24
|
Chen C, Song Q, Lu W, Zhang Z, Yu Y, Liu X, He R. A sensitive platform for DNA detection based on organic electrochemical transistor and nucleic acid self-assembly signal amplification. RSC Adv 2021; 11:37917-37922. [PMID: 35498089 PMCID: PMC9044053 DOI: 10.1039/d1ra07375c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Highly sensitive detection of DNA is of great importance for the detection of genetic damage and errors for the diagnosis of many diseases. Traditional highly sensitive organic electrochemical transistor (OECT)-based methods mainly rely on good conductivity materials, which may be limited by complex synthesis and modification steps. In this work, DNA biosensor based on OECT and hybridization chain reaction (HCR) signal amplification was demonstrated for the first time. Au nanoparticles were electrochemically deposited on the Au gate electrode to increase the surface area. Then, the HCR products, long negatively charged double-stranded DNA, were connected to the target by hybridization, which can increase the effective gate voltage offset of OECT. This sensor exhibited high sensitivity and even 0.1 pM target DNA could be directly detected with a significant voltage shift. In addition, it could discriminate target DNA from the mismatched DNA with good selectivity. This proposed method based on HCR in DNA detection exhibited an efficient amplification performance on OECT, which provided new opportunities for highly sensitive and selective detection of DNA. A new method has been developed for DNA detection by integrating hybridization chain reaction signal amplification with organic electrochemical transistor device for the first time.![]()
Collapse
Affiliation(s)
- Chaohui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Qingyuan Song
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Wangting Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Zhengtao Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Yanhua Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Xiaoyun Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University Wuhan 430056 PR China
| |
Collapse
|
25
|
Gong ZH, Wei ZN, Liu YZ, Xiao LF. [ARTICLE WITHDRAWN] Semiconducting Polymer Dot-Based Ratiometric Fluorescence Nanoprobe for DNA Detection. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5776-5783. [PMID: 33980392 DOI: 10.1166/jnn.2021.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN MAY 2021
Collapse
Affiliation(s)
- Zhen-Hu Gong
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Zong-Nan Wei
- Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yi-Zhang Liu
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Lu-Fei Xiao
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| |
Collapse
|
26
|
Li Z, Cui L, Zhao H, Du J, Gopinath SCB, Lakshmipriya T, Xin X. Aluminum Microcomb Electrodes on Silicon Wafer for Detecting Val66Met Polymorphism in Brain-Derived Neurotrophic Factor. Dev Neurosci 2021; 43:53-62. [PMID: 33849012 DOI: 10.1159/000515197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) dysregulation is widely related with various psychiatric and neurological disorders, including schizophrenia, depression, Rett syndrome, and addiction, and the available evidence suggests that BDNF is also highly correlated with Parkinson's and Alzheimer's diseases. METHODS The BDNF target sequence was detected on a capture probe attached on aluminum microcomb electrodes on the silicon wafer surface. A capture-target-reporter sandwich-type assay was performed to enhance the detection of the BDNF target. RESULTS The limit of detection was noticed to be 100 aM. Input of a reporter sequence at concentrations >10 aM improved the detection of the target sequence by enhancing changes in the generated currents. Control experiments with noncomplementary and single- and triple-mismatches of target and reporter sequences did not elicit changes in current levels, indicating the selective detection of the BDNF gene sequence. CONCLUSION The above detection strategy will be useful for the detection and quantification of BDNF, thereby aiding in the provision of suitable treatments for BDNF-related disorders.
Collapse
Affiliation(s)
- Zhi Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Metabolism and Gastrointestinal Tumor, the First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, China
| | - Liangmin Cui
- Department of Anorectal, The Second People's Hospital of Dongying, Jinan, China
| | - Hongyao Zhao
- Department of Special Inspection, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxin Du
- Department of Anorectal, Shandong university of traditional chinese medicine, Jinan, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Malaysia
| | | | - Xuezhi Xin
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Metabolism and Gastrointestinal Tumor, the First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, China
| |
Collapse
|
27
|
Zheng Z, Zhang H, Zhai T, Xia F. Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi Zheng
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| | - Hongyuan Zhang
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Fan Xia
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| |
Collapse
|
28
|
Graphene for Biosensing Applications in Point-of-Care Testing. Trends Biotechnol 2021; 39:1065-1077. [PMID: 33573848 DOI: 10.1016/j.tibtech.2021.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Graphene and graphene-related materials (GRMs) exhibit a unique combination of electronic, optical, and electrochemical properties, which make them ideally suitable for ultrasensitive and selective point-of-care testing (POCT) devices. POCT device-based applications in diagnostics require test results to be readily accessible anywhere to produce results within a short analysis timeframe. This review article provides a summary of methods and latest developments in the field of graphene and GRM-based biosensing in POCT and an overview of the main applications of the latter in nucleic acids and enzymatic biosensing, cell detection, and immunosensing. For each application, we discuss scientific and technological advances along with the remaining challenges, outlining future directions for widespread use of this technology in biomedical applications.
Collapse
|
29
|
Xia Y, Sun Y, Li H, Chen S, Zhu T, Wang G, Man B, Pan J, Yang C. Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta 2021; 223:121766. [DOI: 10.1016/j.talanta.2020.121766] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
|
30
|
Béraud A, Sauvage M, Bazán CM, Tie M, Bencherif A, Bouilly D. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst 2020; 146:403-428. [PMID: 33215184 DOI: 10.1039/d0an01661f] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Graphene field-effect transistors (GFETs) are emerging as bioanalytical sensors, in which their responsive electrical conductance is used to perform quantitative analyses of biologically-relevant molecules such as DNA, proteins, ions and small molecules. This review provides a detailed evaluation of reported approaches in the design, operation and performance assessment of GFET biosensors. We first dissect key design elements of these devices, along with most common approaches for their fabrication. We compare possible modes of operation of GFETs as sensors, including transfer curves, output curves and time series as well as their integration in real-time or a posteriori protocols. Finally, we review performance metrics reported for the detection and quantification of bioanalytes, and discuss limitations and best practices to optimize the use of GFETs as bioanalytical sensors.
Collapse
Affiliation(s)
- Anouk Béraud
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
Han C, Xu X, Zhang C, Yan D, Liao S, Zhang C, Kong L. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens Bioelectron 2020; 173:112791. [PMID: 33190048 DOI: 10.1016/j.bios.2020.112791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Targeting mitochondria-mediated apoptosis has emerged as a promising strategy for tumor therapy. However, technologies used to treat tumors that enable the direct visualization of mitochondria-mediated apoptosis in living cells have not been developed to date. Cytochrome c (Cyt c) translocation from mitochondria is a central mediating event in cell apoptosis. In this study, we developed a multifunctional nanosensor that can monitor the real-time translocation of Cyt c from mitochondria in living cells to evaluate the antitumor effect of dihydroartemisinin (DHA). A fluorophore-tagged DNA aptamer is loaded on a graphene oxide (GO)-based nanovehicle, and the cytosolic release of Cyt c causes the dissociation of the aptamer from the GO nanovehicle and triggers the emission of a red fluorescence signal. Furthermore, DHA linked with a coumarin derivative is loaded on GO as a mitochondria-targeting ligand to improve its antitumor activity. This DHA prodrug also emits a green fluorescence signal when delivered to mitochondria. This nanosensor provides a convenient mechanism to monitor mitochondrial targeting by drugs and mitochondria-induced therapeutic efficacy, which may be possible to diagnose the drug efficacy to optimize the treatment for patients with cancer.
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Danielson E, Dindo M, Porkovich AJ, Kumar P, Wang Z, Jain P, Mete T, Ziadi Z, Kikkeri R, Laurino P, Sowwan M. Non-enzymatic and highly sensitive lactose detection utilizing graphene field-effect transistors. Biosens Bioelectron 2020; 165:112419. [DOI: 10.1016/j.bios.2020.112419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
|
33
|
Mustonen P, Mackenzie DMA, Lipsanen H. Review of fabrication methods of large-area transparent graphene electrodes for industry. FRONTIERS OF OPTOELECTRONICS 2020; 13:91-113. [PMID: 36641556 PMCID: PMC7362318 DOI: 10.1007/s12200-020-1011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/05/2020] [Indexed: 05/15/2023]
Abstract
Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419.
Collapse
Affiliation(s)
- Petri Mustonen
- Department of Electronics and Nanoengineering, Aalto University, Aalto, FI-00076, Finland.
| | - David M A Mackenzie
- Department of Electronics and Nanoengineering, Aalto University, Aalto, FI-00076, Finland
| | - Harri Lipsanen
- Department of Electronics and Nanoengineering, Aalto University, Aalto, FI-00076, Finland
| |
Collapse
|