1
|
Rzeznicka II, Hidayat AS, Horino H, Ditlhakanyane BC, Ultra VU. Smartphone-enabled medical diagnostics and environmental monitoring for rural Africa. Talanta 2025; 288:127703. [PMID: 39947105 DOI: 10.1016/j.talanta.2025.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Africa has made significant progress in healthcare metrics over the past two decades. However, providing access and quality of healthcare to people living in rural regions remains a challenge. In this respect, so-called mobile health (mHealth) and smartphone-enabled diagnostics methods could be of great use in providing services, both necessary and novel, to rural populations. This review provides a basic background for understanding various concepts behind smartphone-enabled methods and summarizes existing examples in the fields of medical diagnostics and environmental monitoring. The aim is to engage young African students to contribute to the field but also to provide decision makers with ideas on low-cost solutions for rural healthcare.
Collapse
Affiliation(s)
- Izabela I Rzeznicka
- College of Engineering, Shibaura Institute of Technology, Saitama, 337-8570, Japan.
| | - Achmad Syarif Hidayat
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8601, Japan
| | - Hideyuki Horino
- Research Management Center, Tohoku University, Sendai, 982-8577, Japan
| | - Baatshwana Caroline Ditlhakanyane
- Department of Sustainable Natural Resources, School of Environmental Sciences and Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Venecio U Ultra
- Department of Sustainable Natural Resources, School of Environmental Sciences and Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
2
|
Gilroy C, Silver CD, Kunstmann-Olsen C, Miller LM, Johnson SD, Krauss TF. A passive blood separation sensing platform for point-of-care devices. NPJ BIOSENSING 2025; 2:19. [PMID: 40322246 PMCID: PMC12048346 DOI: 10.1038/s44328-025-00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025]
Abstract
The blood test is one of the most performed investigations in clinical practice, with samples typically analysed in a centralised laboratory. Many of these tests monitor routine conditions that would benefit from a point-of-care approach, reducing the burden on practitioners, patients and healthcare systems. Such a decentralised model requires the development of sophisticated, yet easy-to-use technology; however, platforms that combine high-performance with low-cost and simplicity remain scarce. Moreover, most research papers only address a subset of requirements and study specific aspects in isolation. A systems approach that considers the interplay between each element of the technology is clearly required to develop a coherent solution. Here, we present such a systems approach in the context of testing for C-reactive protein (CRP), a commonly requested test in clinical practise that indicates inflammation and is particularly relevant for monitoring patients with chronic diseases, e.g. those with rheumatoid arthritis or who are undergoing cancer therapy. The approach we take here features an entirely passive microfluidic cartridge for blood separation, integrated with a high-performance sensing platform which we have tested in a real-world context. The device is compatible with a handheld detection unit and is simple to use yet can accurately detect CRP levels at clinically relevant levels.
Collapse
Affiliation(s)
- Cameron Gilroy
- Hull York Medical School, Siwards Way, University of York, Heslington, York UK
- School of Physics and Technology, University of York, Heslington, York UK
| | - Callum D. Silver
- School of Physics and Technology, University of York, Heslington, York UK
| | - Casper Kunstmann-Olsen
- School of Physics and Technology, University of York, Heslington, York UK
- Mads Clausen Institute, University of Southern Denmark, Sonderborg, Denmark
| | - Lisa M. Miller
- School of Physics and Technology, University of York, Heslington, York UK
| | - Steven D. Johnson
- School of Physics and Technology, University of York, Heslington, York UK
| | - Thomas F. Krauss
- School of Physics and Technology, University of York, Heslington, York UK
| |
Collapse
|
3
|
Siddique A, Panda SS, Khan S, Dargan ST, Lewis S, Carter I, Van Wyk JA, Mahapatra AK, Morgan ER, Terrill TH. Innovations in animal health: artificial intelligence-enhanced hematocrit analysis for rapid anemia detection in small ruminants. Front Vet Sci 2024; 11:1493403. [PMID: 39660175 PMCID: PMC11628484 DOI: 10.3389/fvets.2024.1493403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Due to their value as a food source, fiber, and other products globally, there has been a growing focus on the wellbeing and health of small ruminants, particularly in relation to anemia induced by blood-feeding gastrointestinal parasites like Haemonchus contortus. The objective of this study was to assess the packed cell volume (PCV) levels in blood samples from small ruminants, specifically goats, and create an efficient biosensor for more convenient, yet accurate detection of anemia for on-farm use in agricultural environments for animal production optimization. The study encompassed 75 adult male Spanish goats, which underwent PCV testing to ascertain their PCV ranges and their association with anemic conditions. Using artificial intelligence-powered machine learning algorithms, an advanced, easy-to-use sensor was developed for rapidly alerting farmers as to low red blood cell count of their animals in this way to enable timely medical intervention. The developed sensor utilizes a semi-invasive technique that requires only a small blood sample. More precisely, a volume of 30 μL of blood was placed onto Whatman filter paper No. 1, previously soaked with anhydrous glycerol. The blood dispersion pattern on the glycerol-infused paper was then recorded using a smartphone after 180 s. Subsequently, these images were examined in correlation with established PCV values obtained from conventional PCV analysis. Four separate machine learning models (ML) supported models, namely support vector machine (SVM), K-nearest neighbors (KNN), backpropagation neural network (BPNN), and image classification-based Keras model, were created and assessed using the image dataset. The dataset consisted of 1,054 images that were divided into training, testing, and validation sets in a 70:20:10 ratio. The initial findings indicated a detection accuracy of 76.06% after only 10 epochs for recognizing different levels of PCV in relation to anemia, ranging from healthy to severely anemic. This testing accuracy increased markedly, to 95.8% after 100 epochs and other model parameter optimization. Results for SVM had an overall F1 score of 74-100% in identifying the PCV range for blood pattern images representing healthy to severely anemic animals, and BPNN showed 91-100% accuracy in identifying the PCV range for anemia detection. This work demonstrates that AI-driven biosensors can be used for on-site rapid anemia detection. Optimized machine learning models maximize detection accuracy, proving the sensor's validity and rapidity in assessing anemia levels. This breakthrough will allow farmers, with rapid results, to increase animal wellbeing and agricultural productivity.
Collapse
Affiliation(s)
- Aftab Siddique
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - Sudhanshu S. Panda
- Institute for Environmental Spatial Analysis, University of North Georgia, Oakwood, GA, United States
| | - Sophia Khan
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - Seymone T. Dargan
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - Savana Lewis
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - India Carter
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - Jan A. Van Wyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Ajit K. Mahapatra
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| | - Eric R. Morgan
- Institute for Global Food Security, Queen’s University, University Road, Belfast, United Kingdom
| | - Thomas H. Terrill
- Department of Agricultural Science, Fort Valley State University, Fort Valley, GA, United States
| |
Collapse
|
4
|
Zhou J, Li H, Li X, Liang X, Feng Z, He Q, Zhang M, Chen X, Chen H, Zhang H, Guo W. Automatic characterization of capillary flow profile of liquid samples on μTADs based on capacitance measurement. J Chromatogr A 2024; 1735:465328. [PMID: 39232420 DOI: 10.1016/j.chroma.2024.465328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Capillary flow profile of liquid samples in porous media is closely related to the important properties of liquid samples, including the viscosity and the surface energy. Therefore, capillary flow profile can be used as an index to differentiate liquid samples with different properties. Fast and automatic characterization of capillary flow profile of liquid samples is necessary. In this work, we develop a portable and economical capacitance acquisition system (CASY) to easily obtain the capillary flow profile of liquid samples on microfluidic thread-based analytical devices (μTADs) by measuring the capacitance during the capillary flow. At first, we validate the accuracy of this method by comparing with the traditional method by video analysis in obtaining the capillary flow profiles in μTADs of cotton threads or glass fiber threads. Then we use it to differentiate liquid samples with different viscosity (mixture of water and glycerol). In addition, capillary flow profile on μTADs with chemical valves (chitosan or sucrose) can also be obtained on this device. Lastly, we show the potential of this device in measurement of hematocrit (HCT) of whole blood samples. This device can be used to catalog liquid biological samples with different properties in point-of-care diagnostics in the near future.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xionghui Li
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xuanying Liang
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Qinghao He
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Huilin Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Huiru Zhang
- Guangdong University Research Findings Commercialization Center, Foshan, 528253, Guangdong, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China.
| |
Collapse
|
5
|
Park J. Smartphone based lateral flow immunoassay quantifications. J Immunol Methods 2024; 533:113745. [PMID: 39173705 DOI: 10.1016/j.jim.2024.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Lateral Flow Immunoassay (LFI) is a disposable tool designed to detect target substances using minimal resources. For qualitative analysis, LFI does not require a device (i.e., reader) to interpret test results. However, various studies have been conducted to implement quantitative analysis using LFI systems, incorporating LFI along with electrical/electronic readers, to overcome the limitations associated with qualitative LFI analysis. The reader used for the quantitative analysis of LFI should ensure mobility for easy on-site diagnostics and inspections, be user-friendly in operation, and have a fast processing speed until the results are obtained. Due to these requirements, smartphones are increasingly utilized as readers in quantitative analysis of LFI. Among the various components constituting a smartphone, high-performance cameras can serve as sensors converting visual signals into electrical signals. With powerful processing units, large storage capacity, and network capabilities for transmitting analysis results, smartphones are also utilized as interfaces for quantitative analysis. Absolutely, the widespread global use of smartphones is a key advantage, leading to their utilization as diagnostic devices for acquiring, analyzing, storing, and transmitting assay test results. This paper summarizes research cases where smartphones are utilized as readers for quantitative LFI systems used in confirming contamination in food or the environment, detecting drugs, and diagnosing diseases in humans or animals. The systems are classified based on the types of label particles used in the assay, and efforts to improve the quantitative analysis performance for each are examined. Cases where smartphones were used as LFI readers for the diagnosis of the 2019 Coronavirus Disease (COVID-19), which has recently caused significant global damage, have also been investigated.
Collapse
Affiliation(s)
- Jongwon Park
- Department of Biomedical Engineering, Kyungil University, Gyeongsan 38428, Republic of Korea.
| |
Collapse
|
6
|
Chen Z, Li H, Zhang M, Li X, Zhang Y, Zhu G, Feng Z, Xiao Z, Zhang H, Cui X, Guo W. Cotton threads encapsulated by thermal contraction tube for point-of-care diagnostics. Microchem J 2024; 200:110423. [DOI: 10.1016/j.microc.2024.110423] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Schobesberger S, Thumfart H, Selinger F, Schlimp CJ, Zipperle J, Ertl P. Development of a Paper-based Hematocrit Test and a Lateral Flow Assay to Detect Critical Fibrinogen Concentrations Using a Bottom-Up Pyramid Workflow Approach. ACS OMEGA 2024; 9:8533-8542. [PMID: 38405462 PMCID: PMC10882670 DOI: 10.1021/acsomega.3c10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Fibrinogen is a coagulation factor in human blood and the first one to reach critical levels in major bleeding. Hypofibrinogenemia (a too low fibrinogen concentration in blood) poses great challenges to first responders, clinicians, and healthcare providers since it represents a risk factor for exsanguination and massive transfusion requirements. Thus, the rapid assessment of the fibrinogen concentration at the point of care has gained considerable importance in preventing and managing major blood loss. However, in whole blood measurements, hematocrit variations affect the amount (volume fraction) of plasma that passes the detection zone. In an attempt to accurately determine realistic critical levels of fibrinogen (<1.5 mg/mL) in patients needing immediate treatment and medical interventions, we have developed novel diagnostic systems capable of estimating hematocrit and critical fibrinogen concentrations. A lateral flow assay (LFA) for the detection of fibrinogen has been developed by establishing a workflow employing rapid characterization methods to streamline LFA development. The integration of two detection lines enables (i) the identification of fibrinogen (first line) present in the sample and (ii) the determination of the clinically critical fibrinogen concentrations below 1.5 mg/mL (second line). Furthermore, the paper-based separation of blood cells from plasma provides a semiquantitative estimate of the hematocrit by analyzing the fractions. Initial validation of the point-of-care (PoC) hematocrit test revealed good comparability to a standard laboratory method. The developed diagnostic systems have the ability to accelerate decision-making in cases with major bleeding.
Collapse
Affiliation(s)
| | - Helena Thumfart
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoph J Schlimp
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
- Department of Anaesthesiology and Intensive Care, AUVA Trauma Center Linz, Garnisonstraße 7, 4010 Linz, Austria
| | - Johannes Zipperle
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
8
|
Pohanka M. Current trends in digital camera-based bioassays for point-of-care tests. Clin Chim Acta 2024; 552:117677. [PMID: 38000459 DOI: 10.1016/j.cca.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care and bedside tests are analytical devices suitable for a growing role in the current healthcare system and provide the opportunity to achieve an exact diagnosis by an untrained person and in various conditions and sites where it is necessary. Using a digital camera integrated into a well-accessible device like a smartphone brings a new way in which a colorimetric point-of-care diagnostic test can provide unbiased data. This review summarizes basic facts about the colorimetric point-of-care tests, principles of how to use a portable device with a camera in the assay, applications of digital cameras for the current tests, and new devices described in the recent papers. An overview of the recent literature and a discussion of recent developments and future trends are provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
9
|
Abstract
A high hematocrit (HCT) level is strongly associated with the risk of cardiovascular disease. For early diagnosis of cardiovascular disease, it is vital to regularly measure the HCT, which is typically achieved by centrifuging a blood sample to measure the percentage of red blood cells. However, the centrifugal modalities are usually bulky, expensive, and require a stable electric input, which restrict the availability. This research develops a semi-automatic and portable centrifugal device for HCT measurement. This torque-actuated semi-automatic centrifuge, which we call the tFuge, is inspired by a music box, allowing different operators to generate the same rhythm. It is electricity-free and can be controlled based on a constant torque mechanism. Repeatable test results can be received from among different users regardless of their age, sex, and activity. With the assistance of the Boycott effect on the tFuge, we proved that the HCT level is in high linearity to the length of the sedimentation of the blood cells in a tube (R2 = 0.99, sample HCT range 10-60%). The tFuge takes less than 4 min and requires no more than 10 μL of blood that can be obtained by a less-invasive finger prick to complete the testing procedure. Calibrated gradient numbers are printed onto the rotation disc for instant HCT results that can be read by the naked eye. We expect this proposed point-of-care testing device possesses the potential to replace the microhematocrit centrifuge in the regions with limited resources.
Collapse
Affiliation(s)
- You-Mao Liao
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ping-Yeh Chiu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Hoffman MSF, McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. Measurement of Blood Dilution during Lancet-Free Blood Sampling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083257 DOI: 10.1109/embc40787.2023.10340898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this paper, we report on a fluorescent and colorimetric system for measuring the dilution of capillary blood released by a needle-free jet injector. Jet injection uses a high-speed liquid jet to penetrate tissue, and in the process can release capillary blood that can be collected for performing blood tests. In this way, blood sampling can be performed without the use of a lancet. However, any injectate that mixes with the collected blood dilutes the sample and may significantly impact subsequent analyses. By adding the fluorescent marker indocyanine green to the injected liquid, the fraction of injectate mixed into the collected blood can be measured. The incorporation of colorimetry allows our system to also correct for the impact of hematocrit on fluorescence. The results from this system show that it can determine the dilution of blood that has been diluted by up to 10 %, the upper limit of dilution typically observed in lancet-free blood sampling via jet injection.Clinical Relevance- Blood samples can be collected by jet injection without significant dilution, avoiding the need for lancing.
Collapse
|
11
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
Lee S, Kim S, Yoon DS, Park JS, Woo H, Lee D, Cho SY, Park C, Yoo YK, Lee KB, Lee JH. Sample-to-answer platform for the clinical evaluation of COVID-19 using a deep learning-assisted smartphone-based assay. Nat Commun 2023; 14:2361. [PMID: 37095107 PMCID: PMC10124933 DOI: 10.1038/s41467-023-38104-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
Since many lateral flow assays (LFA) are tested daily, the improvement in accuracy can greatly impact individual patient care and public health. However, current self-testing for COVID-19 detection suffers from low accuracy, mainly due to the LFA sensitivity and reading ambiguities. Here, we present deep learning-assisted smartphone-based LFA (SMARTAI-LFA) diagnostics to provide accurate decisions with higher sensitivity. Combining clinical data learning and two-step algorithms enables a cradle-free on-site assay with higher accuracy than the untrained individuals and human experts via blind tests of clinical data (n = 1500). We acquired 98% accuracy across 135 smartphone application-based clinical tests with different users/smartphones. Furthermore, with more low-titer tests, we observed that the accuracy of SMARTAI-LFA was maintained at over 99% while there was a significant decrease in human accuracy, indicating the reliable performance of SMARTAI-LFA. We envision a smartphone-based SMARTAI-LFA that allows continuously enhanced performance by adding clinical tests and satisfies the new criterion for digitalized real-time diagnostics.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Sunmok Kim
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Astrion Inc, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Hyowon Woo
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Dongho Lee
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, 24, Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea.
| |
Collapse
|
13
|
Clemente F, Antonacci A, Giardi MT, Frisulli V, Tambaro FP, Scognamiglio V. Last Trends in Point-of-Care (POC) Diagnostics for the Management of Hematological Indices in Home Care Patients. BIOSENSORS 2023; 13:345. [PMID: 36979557 PMCID: PMC10046198 DOI: 10.3390/bios13030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Today, complete blood count (CBC) analyses are highly automated and allow for high throughput and accurate and reliable results. However, new analytical tools are in great demand to provide simple, rapid and cost-effective management of hematological indices in home care patients. Chronic disease monitoring at home has become a benefit for patients who are finding cost savings in programs designed to monitor/treat patients in offsite locations. This review reports the latest trends in point-of-care (POC) diagnostics useful for home testing of key hematological counts that may be affected during home therapy treatment.
Collapse
Affiliation(s)
- Fabrizio Clemente
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Italy
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, URT Naples c/o Azienda Ospedialiera di Rilievo Nazionale (AORN) Santobono-Pausilipon Via Teresa Ravaschieri 8, 80112 Naples, Italy
| | - Amina Antonacci
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Italy
| | - Maria Teresa Giardi
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Italy
| | - Valeria Frisulli
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Italy
| | - Francesco Paolo Tambaro
- Struttura Semplice Dipartimentale Trapianto di Midollo Osseo-Azienda Ospedialiera di Rilievo Nazionale (AORN), Santobono-Pausilipon, 80129 Napoli, Italy
| | - Viviana Scognamiglio
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Italy
| |
Collapse
|
14
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
15
|
Geballa-Koukoula A, Ross G, Bosman A, Zhao Y, Zhou H, Nielen M, Rafferty K, Elliott C, Salentijn G. Best practices and current implementation of emerging smartphone-based (bio)sensors - Part 2: Development, validation, and social impact. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
16
|
Das S, Chakraborty S. Simultaneous quantitative detection of hematocrit and hemoglobin from whole blood using a multiplexed paper sensor with a smartphone interface. LAB ON A CHIP 2023; 23:318-329. [PMID: 36562505 DOI: 10.1039/d2lc00456a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a highly accurate single-step label-free testing technology for simultaneous and independent hematocrit (Hct) and hemoglobin (Hb) level detection from a drop of whole blood by employing a disposable paper strip sensor interfaced with a portable impedimetric device. The paper strip is fabricated by in situ automated printing of a customized electrode template on the non-glossy side of a commercially available photo paper substrate followed by graphite deposition. The integrated platform device technology additionally includes a compact detection cum readout unit comprising a high precision impedance converter system that combines an on-board frequency generator with an analog-to-digital converter evaluation board, collectively interfaced with a central processor, calibration circuit, and smartphone. Employing a dispensed blood sample volume of 25 μL, the device is shown to have a sensitivity of 92 Ω/Hct and 287 Ω/Hb at an optimal frequency of 57 kHz. The respective linear response regimes appear to be wide enough to cover physiologically relevant limits, with excellent stability and reproducibility. Validation with clinical samples reveals limits of detection of Hct and Hb levels as low as 4.66% and 1.89 g dL-1, respectively, which are beyond the quantitative capability of commonly used affordable point of care test kits. The envisaged paradigm of rapid, robust, highly accurate, energy-efficient, simple, user-friendly, multiplex portable detection, obviating any possible ambiguities in interpretation due to common artefacts of colorimetric detection technologies such as optical interference with the image analytical procedure due to the inherent redness of blood samples and background illumination, renders this ideal for deployment in resource-limited settings.
Collapse
Affiliation(s)
- Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| |
Collapse
|
17
|
Laha S, Bandopadhyay A, Chakraborty S. Smartphone-Integrated Label-Free Rapid Screening of Anemia from the Pattern Formed by One Drop of Blood on a Wet Paper Strip. ACS Sens 2022; 7:2028-2036. [PMID: 35802863 DOI: 10.1021/acssensors.2c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Screening of anemic patients poses demanding challenges in extreme point-of-care settings where the gold standard diagnostic technologies are not pragmatic and the alternative point-of-care technologies suffer from compromised accuracy, prohibitive cost, process complexity, or reagent stability issues. As a disruption to this paradigm, here, we report the development of a smartphone-based sensor for rapid screening of anemic patients by exploiting the patterns formed by a spreading drop of blood on a wet paper strip wherein blood attempts to displace a more viscous fluid, on the porous matrix of a paper, leading to "finger-like" projections at the interface. We analyze the topological features of the pattern via smartphone-enabled image analytics and map the same with the relative occupancy of the red blood cells in the blood sample, allowing for label-free screening and classification of blood samples corresponding to moderate to severe anemic conditions. The accuracy of detection is verified by comparing with gold standard reports of hematology analyzer, showing a strong correlation coefficient (R2) of 0.975. This technique is likely to provide a crucial decision-making tool that obviates delicate reagents and skilled technicians for supreme functionality in resource-limited settings.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
18
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
19
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
20
|
High-Performance Passive Plasma Separation on OSTE Pillar Forest. BIOSENSORS-BASEL 2021; 11:bios11100355. [PMID: 34677311 PMCID: PMC8534190 DOI: 10.3390/bios11100355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Plasma separation is of high interest for lateral flow tests using whole blood as sample liquids. Here, we built a passive microfluidic device for plasma separation with high performance. This device was made by blood filtration membrane and off-stoichiometry thiol-ene (OSTE) pillar forest. OSTE pillar forest was fabricated by double replica moldings of a laser-cut polymethylmethacrylate (PMMA) mold, which has a uniform microstructure. This device utilized a filtration membrane to separate plasma from whole blood samples and used hydrophilic OSTE pillar forest as the capillary pump to propel the plasma. The device can be used to separate blood plasma with high purity for later use in lateral flow tests. The device can process 45 μL of whole blood in 72 s and achieves a plasma separation yield as high as 60.0%. The protein recovery rate of separated plasma is 85.5%, which is on par with state-of-the-art technologies. This device can be further developed into lateral flow tests for biomarker detection in whole blood.
Collapse
|
21
|
Abstract
Analytical devices for point-of-care diagnoses are highly desired and would improve quality of life when first diagnoses are made early and pathologies are recognized soon. Lateral flow tests (LFTs) are such tools that can be easily performed without specific equipment, skills, or experiences. This review is focused on the use of LFT in point-of-care diagnoses. The principle of the assay is explained, and new materials like nanoparticles for labeling, new recognition molecules for interaction with an analyte, and new additional instrumentation like signal scaling by a smartphone camera are described and discussed. Advantages of the LFT devices as well as their limitations are described and discussed here considering actual papers that are properly cited.
Collapse
|
22
|
Chen L, Liu Y, Xu H, Ma L, Wang Y, Wang F, Zhu J, Hu X, Yi K, Yang Y, Shen H, Zhou F, Gao X, Cheng Y, Bai L, Duan Y, Wang F, Zhu Y. Touchable cell biophysics property recognition platforms enable multifunctional blood smart health care. MICROSYSTEMS & NANOENGINEERING 2021; 7:103. [PMID: 34963817 PMCID: PMC8651774 DOI: 10.1038/s41378-021-00329-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 05/10/2023]
Abstract
As a crucial biophysical property, red blood cell (RBC) deformability is pathologically altered in numerous disease states, and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs. However, there is still a gap in applying it further to point-of-care blood devices due to the large external equipment (high-resolution microscope and microfluidic pump), associated operational difficulties, and professional analysis. Herein, we revolutionarily propose a smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition both mechanically and morphologically. Deformation of the RBC population is caused by pressing the hydrogel via an integrated mechanical transfer device. The biophysical properties of the cell population are obtained by the designed smartphone algorithm. Artificial intelligence-based modeling of cell biophysics properties related to blood diseases and quality was developed for online testing. We currently achieve 100% diagnostic accuracy for five typical clinical blood diseases (90 megaloblastic anemia, 78 myelofibrosis, 84 iron deficiency anemia, 48 thrombotic thrombocytopenic purpura, and 48 thalassemias) via real-world prospective implementation; furthermore, personalized blood quality (for transfusion in cardiac surgery) monitoring is achieved with an accuracy of 96.9%. This work suggests a potential basis for next-generation blood smart health care devices.
Collapse
Affiliation(s)
- Longfei Chen
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518000 China
| | - Yantong Liu
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518000 China
| | - Hongshan Xu
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Yifan Wang
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Fang Wang
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Jiaomeng Zhu
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Xuejia Hu
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Yi Yang
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518000 China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Xiaoqi Gao
- Affiliations School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072 China
| | - Yanxiang Cheng
- Remin Hospital of Wuhan University, Wuhan University, Wuhan, 430060 China
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002 China
| | - Yongwei Duan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002 China
| |
Collapse
|