1
|
Shanmugam ST, Campos R, Trashin S, Daems E, Carneiro D, Fraga A, Ribeiro R, De Wael K. Singlet oxygen-based photoelectrochemical detection of miRNAs in prostate cancer patients' plasma: A novel diagnostic tool for liquid biopsy. Bioelectrochemistry 2024; 158:108698. [PMID: 38640856 DOI: 10.1016/j.bioelechem.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.
Collapse
Affiliation(s)
- Saranya Thiruvottriyur Shanmugam
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Rui Campos
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Elise Daems
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Diogo Carneiro
- i3S, Tumour & Microenvironment Interactions Group, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Department of Urology, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Avelino Fraga
- i3S, Tumour & Microenvironment Interactions Group, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Department of Urology, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Ricardo Ribeiro
- i3S, Tumour & Microenvironment Interactions Group, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Department of Pathology, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
2
|
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression. They play an important role in many biological processes including human diseases. However, miRNAs are challenging to detect due to their short sequence length and low copy number. A number of conventional (e.g., Northern blot, microarray, and RT-qPCR) and emerging (e.g., nanostructured materials and electrochemical methods) techniques have been developed to detect miRNA, each with their own strengths and weaknesses. Some of these techniques have been combined to detect miRNAs as disease biomarkers in point-of-care (POC) settings. Nonetheless, there is still potential for further innovation to facilitate the detection of miRNAs.
Collapse
Affiliation(s)
- Afrah Bawazeer
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Gao Q, Li Y, Li Q, Ma C, Shi C. Sensitive Dual Electrochemical-Colorimetric Point-of-Care (POC) Sensor for the Rapid Detection of Mycoplasma pneumoniae. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qian Gao
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yang Li
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qi Li
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chao Shi
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Wang X, Liu S, Xiao R, Hu J, Li L, Ning Y, Lu F. Graphene-oxide-based bioassay for the fluorometric determination of agrC gene transcription in methicillin-resistant Staphylococcus aureus that uses nicking-enzyme-assisted target recycling and a hybridization chain reaction. Talanta 2022; 250:123714. [PMID: 35779362 DOI: 10.1016/j.talanta.2022.123714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Herein, we report the development of a graphene-oxide-based (GO-based) fluorescent bioassay for determining agrC gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). The design is based on nicking-enzyme-assisted (Nb.BbvcI-assisted) target recycling amplification (NATR) and a hybridization chain reaction (HCR). The system consists of a helper probe (HP), a molecular beacon (MB) probe, four hairpins, and endonuclease Nb.BbvcI, which plays a role in target recycling and signal amplification. In the absence of the target, all of the carboxyfluorescein-labeled (FAM-labeled) hairpins are adsorbed through π-stacking interactions onto the surface of GO, resulting in FAM signal quenching. When the target is added, three nucleic acid chains hybridize together to form a triple complex that is recognized by Nb.BbvCI. The MB probe is then cleaved by Nb.BbvCI to generate an HP/target complex and two new DNA fragments; the former is hybridized to another MB probe and enters the next round of reaction. The two newly reproduced DNA fragments induce a HCR with the assistance of hairpins 1-4 to create double-stranded DNA (dsDNA) products. These dsDNA products are repelled by GO and generate strong fluorescence at excitation/emission wavelengths of 480/514 nm. Importantly, synergy between FAM and the dsDNA-SYBR Green I duplex structure led to significantly amplified fluorescence and enhanced sensitivity. The bioassay showed a detection limit of 7.5 fM toward the target and a good linearity in the 10 fM to 100 pM range. The developed method was applied to monitor biofilm formation and study the mechanism of drug action, with satisfactory results obtained.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Rong Xiao
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Ling Li
- Experimental Center of Molecular Biology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|