1
|
Bajgai J, Jun M, Oh JH, Lee JH. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025; 292:127954. [PMID: 40120511 DOI: 10.1016/j.talanta.2025.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynaecological malignancies, primarily because of its typically asymptomatic early stages, which complicates early detection. Therefore, developing sensitive and appropriate biomarkers for efficient diagnosis of OC is urgently needed. Aptamers, short sequences of single-stranded DNA or RNA molecules, have become crucial in tumor diagnosis because of their high affinity for specific molecules produced by tumors. This ability allows aptamers to accurately detect OC, thus providing better survival rates and a reduced disease burden. Biosensors that combine recognition molecules and nanomaterials are essential in various fields, including disease diagnosis and health management. Molecular-specific field-effect transistor (FET) biosensors are particularly promising due to their rapid response times, ease of miniaturization, and high sensitivity in detecting OC. Aptamers, which are known for their stability and structural tunability, are increasingly being used as biological recognition units in FET biosensors, offering selective and high-affinity binding to target molecules that are ideal for medical diagnostics. This review explores the recent advancements in biosensors for OC detection, including FET biosensors with aptamer-functionalized nanomaterials for CA125 and HE4. Furthermore, this review provides an overview of the structure and sensing principles of these advanced biosensors, preparation methods and functionalization strategies that enhance their performance. Additionally, notable progress and potential of biosensors, including aptamer-functionalized FET biosensors for OC diagnosis have been summarized, emphasising their role and clinical validation in advancing medical diagnostics and improving patient outcomes through enhanced detection capabilities.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
| |
Collapse
|
2
|
Pandey M, Bhaiyya M, Rewatkar P, Zalke JB, Narkhede NP, Haick H. Advanced Materials for Biological Field-Effect Transistors (Bio-FETs) in Precision Healthcare and Biosensing. Adv Healthc Mater 2025:e2500400. [PMID: 40207741 DOI: 10.1002/adhm.202500400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Biological Field Effect Transistors (Bio-FETs) are redefining the standard of biosensing by enabling label-free, real-time, and extremely sensitive detection of biomolecules. At the center of this innovation is the fundamental empowering role of advanced materials, such as graphene, molybdenum disulfide, carbon nanotubes, and silicon. These materials, when harnessed with the downstream biomolecular probes like aptamers, antibodies, and enzymes, allow Bio-FETs to offer unrivaled sensitivity and precision. This review is an exposition of how advancements in materials science have permitted Bio-FETs to detect biomarkers in extremely low concentrations, from femtomolar to attomolar levels, ensuring device stability and reliability. Specifically, the review examines how the incorporation of cutting-edge materials architectures, like flexible / stretchable and multiplexed designs, is expanding the frontiers of biosensing and contributing to the development of more adaptable and user-friendly Bio-FET platforms. A key focus is placed on the synergy of Bio-FETs with artificial intelligence (AI), the Internet of Things (IoT), and sustainable materials approaches as fast-tracking toward transition from research into practical healthcare applications. The review also explores current challenges such as material reproducibility, operational durability, and cost-effectiveness. It outlines targeted strategies to address these hurdles and facilitate scalable manufacturing. By emphasizing the transformative role played by advanced materials and their cementing position in Bio-FETs, this review positions Bio-FETs as a cornerstone technology for the future healthcare solution for precision applications. These advancements would lead to an era where material innovation would herald massive strides in biomedical diagnostics and subsume.
Collapse
Affiliation(s)
- Minal Pandey
- Department of Electronics Engineering, Ramdeobaba University, Nagpur, 440013, India
| | - Manish Bhaiyya
- Department of Electronics Engineering, Ramdeobaba University, Nagpur, 440013, India
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Prakash Rewatkar
- Department of Mechanical Engineering, Israel Institute of Technology, Technion, Haifa, 3200003, Israel
| | - Jitendra B Zalke
- Department of Electronics Engineering, Ramdeobaba University, Nagpur, 440013, India
| | - Nitin P Narkhede
- Department of Electronics Engineering, Ramdeobaba University, Nagpur, 440013, India
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
- Life Science Technology (LiST) Group, Danube Private University, Fakultät Medizin/Zahnmedizin, Steiner Landstraße 124, Krems-Stein, 3500, Austria
| |
Collapse
|
3
|
Yue Y, Chen C, Liu Y, Kong D, Wei D. Multifunctional Integrated Biosensors Based on Two-Dimensional Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70160-70173. [PMID: 39661741 DOI: 10.1021/acsami.4c18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In recent years, field-effect transistor (FET) sensing technology has attracted significant attention owing to its noninvasive, label-free, real-time, and user-friendly detection capabilities. Owing to the large specific surface area, high flexibility, and excellent conductivity of two-dimensional (2D) materials, FET biosensors based on 2D materials have demonstrated unique potential in biomarker analysis and healthcare applications, driving continuous innovation and transformation in the field. Here, we review recent trends in the development of 2D FET biosensors based on key performance metrics and main characteristics, and we also discuss structural designs and modification strategies for biosensing devices utilizing graphene, transition metal dichalcogenides, black phosphorus, and other 2D materials to enhance key performance metrics. Finally, we offer insights into future directions for biosensor advancements, discuss potential improvements, and present new recommendations for practical clinical applications.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Department of Material Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Liu L, Pu Y, Fan J, Yan Y, Liu W, Luo K, Wang Y, Zhao G, Chen T, Puiu PD, Huang H. Wearable Sensors, Data Processing, and Artificial Intelligence in Pregnancy Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:6426. [PMID: 39409471 PMCID: PMC11479201 DOI: 10.3390/s24196426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Pregnancy monitoring is always essential for pregnant women and fetuses. According to the report of WHO (World Health Organization), there were an estimated 287,000 maternal deaths worldwide in 2020. Regular hospital check-ups, although well established, are a burden for pregnant women because of frequent travelling or hospitalization. Therefore, home-based, long-term, non-invasive health monitoring is one of the hot research areas. In recent years, with the development of wearable sensors and related data-processing technologies, pregnancy monitoring has become increasingly convenient. This article presents a review on recent research in wearable sensors, physiological data processing, and artificial intelligence (AI) for pregnancy monitoring. The wearable sensors mainly focus on physiological signals such as electrocardiogram (ECG), uterine contraction (UC), fetal movement (FM), and multimodal pregnancy-monitoring systems. The data processing involves data transmission, pre-processing, and application of threshold-based and AI-based algorithms. AI proves to be a powerful tool in early detection, smart diagnosis, and lifelong well-being in pregnancy monitoring. In this review, some improvements are proposed for future health monitoring of pregnant women. The rollout of smart wearables and the introduction of AI have shown remarkable potential in pregnancy monitoring despite some challenges in accuracy, data privacy, and user compliance.
Collapse
Affiliation(s)
- Linkun Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yujian Pu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junzhe Fan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Yan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenpeng Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kailong Luo
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yiwen Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Guanlin Zhao
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tupei Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Poenar Daniel Puiu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
5
|
Aftab S, Koyyada G, Mukhtar M, Kabir F, Nazir G, Memon SA, Aslam M, Assiri MA, Kim JH. Laser-Induced Graphene for Advanced Sensing: Comprehensive Review of Applications. ACS Sens 2024; 9:4536-4554. [PMID: 39284075 DOI: 10.1021/acssensors.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Laser-induced graphene (LIG) and Laser-scribed graphene (LSG) are both advanced materials with significant potential in various applications, particularly in the field of sustainable sensors. The practical uses of LIG (LSG), which include gas detection, biological process monitoring, strain assessment, and environmental variable tracking, are thoroughly examined in this review paper. Its tunable characteristics distinguish LIG (LSG), which is developed from accurate laser beam modulation on polymeric substrates, and they are essential in advancing sensing technologies in many applications. The recent advances in LIG (LSG) applications include energy storage, biosensing, and electronics by steadily advancing efficiency and versatility. The remarkable flexibility of LIG (LSG) and its transformative potential in regard to sensor manufacturing and utilization are highlighted in this manuscript. Moreover, it thoroughly examines the various fabrication methods used in LIG (LSG) production, highlighting precision and adaptability. This review navigates the difficulties that are encountered in regard to implementing LIG sensors and looks ahead to future developments that will propel the industry forward. This paper provides a comprehensive summary of the latest research in LIG (LSG) and elucidates this innovative material's advanced and sustainable elements.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, School of Sciences, SR University, Warangal 506371, Telangana, India
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Sufyan Ali Memon
- Defense Systems Engineering Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Wu X, Gao S, Xiao L, Wang J. WSe 2 Negative Capacitance Field-Effect Transistor for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42597-42607. [PMID: 39102741 DOI: 10.1021/acsami.4c06648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials are highly sought after for their high sensitivity, label-free detection, fast response, and ease of on-chip integration. However, the subthreshold swing (SS) of FETs is constrained by the Boltzmann limit and cannot fall below 60 mV/dec, hindering sensor sensitivity enhancement. Additionally, the gate-leakage current of 2D material biosensors in liquid environments significantly increases, adversely affecting the detection accuracy and stability. Based on the principle of negative capacitance, this paper presents for the first time a two-dimensional material WSe2 negative capacitance field-effect transistor (NCFET) with a minimum subthreshold swing of 56 mV/dec in aqueous solution. The NCFET shows a significantly improved biosensor function. The pH detection sensitivity of the NCFET biosensor reaches 994 pH-1, nearly an order of magnitude higher than that of the traditional two-dimensional WSe2 FET biosensor. The Al2O3/HfZrO (HZO) bilayer dielectric in the NCFET not only contributes to negative capacitance characteristics in solution but also significantly reduces the leakage in solution. Utilizing an enzyme catalysis method, the WSe2 NCFET biosensor demonstrates a specific detection of glucose molecules, achieving a high sensitivity of 4800 A/A in a 5 mM glucose solution and a low detection limit (10-9 M). Further experiments also exhibit the ability of the biosensor to detect glucose in sweat.
Collapse
Affiliation(s)
- Xian Wu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Sen Gao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Lei Xiao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Nisar S, Dastgeer G, Shazad ZM, Zulfiqar MW, Rasheed A, Iqbal MZ, Hussain K, Rabani I, Kim D, Irfan A, Chaudhry AR. 2D Materials in Advanced Electronic Biosensors for Point-of-Care Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401386. [PMID: 38894575 PMCID: PMC11336981 DOI: 10.1002/advs.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.
Collapse
Affiliation(s)
- Sobia Nisar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
| | - Ghulam Dastgeer
- Department of Physics & AstronomySejong UniversitySeoul05006Republic of Korea
| | - Zafar Muhammad Shazad
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Chemical Polymer and Composite EngineeringUniversity of Engineering & TechnologyFaisalabad CampusLahore38000Pakistan
| | - Muhammad Wajid Zulfiqar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Amir Rasheed
- School of Materials Science and EngineeringAnhui UniversityHefeiAnhui230601China
| | - Muhammad Zahir Iqbal
- Renewable Energy Research LaboratoryFaculty of Engineering SciencesGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiKhyber Pakhtunkhwa23640Pakistan
| | - Kashif Hussain
- THz Technical Research Center; Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdong Province518060China
- School of Materials Science and EngineeringCAPTPeking UniversityBeijing100871China
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Deok‐kee Kim
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Ahmad Irfan
- Department of ChemistryCollege of ScienceKing Khalid UniversityP. O. Box 9004Abha61413Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of PhysicsCollege of ScienceUniversity of BishaP.O. Box 551Bisha61922Saudi Arabia
| |
Collapse
|
8
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Aftab S, Li X, Hussain S, Aslam M, Hegazy HH, Abd-Rabboh HSM, Koyyada G, Kim JH. Nanomaterials-Based Field-Effect Transistor for Protein Sensing: New Advances. ACS Sens 2024; 9:9-22. [PMID: 38156963 DOI: 10.1021/acssensors.3c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
It is crucial for early stage medical diagnostics to identify disease biomarkers at ultralow concentrations. A wide range of analytes can be identified using low-dimensional materials to build highly sensitive, targeted, label-free, field-effect transistor (FET) biosensors. Two-dimensional (2D) materials are preferable for high-performance biosensing because of their dramatic change in resistivity upon analyte adsorption or biomarker detection, tunable electronic properties, high surface activities, adequate stability, and layer-dependent semiconducting properties. We give a succinct overview of interesting applications for protein sensing with various architectural styles, such as 2D transition metal dichalcogenides (TMDs)-based FETs that include carbon nanotubes (CNTs), graphene (Gr), reduced graphene oxide (rGr), 2D transition-metal carbides (MXene), and Gr/MXene heterostructures. Because it might enable individuals to perform better, this review will be an important contribution to the field of medical science. These achievements demonstrate point-of-care diagnostics' abilities to detect biomarkers at ultrahigh performance levels. A summary of the present opportunities and challenges appears in the conclusion.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, Anhui China
- Anhui Laboratory of Advanced Laser Technology, Hefei 230037, Anhui, China
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Str.19, 620002 Yekaterinburg, Russia
| | - Hosameldin Helmy Hegazy
- Physics Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Daehak-ro 280, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Daehak-ro 280, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
10
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
12
|
Wu X, Zhao H, Zhou E, Zou Y, Xiao S, Ma S, You R, Li P. Two-Dimensional Transition Metal Dichalcogenide Tunnel Field-Effect Transistors for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23583-23592. [PMID: 37020349 DOI: 10.1021/acsami.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Haojie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Enze Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Shanpeng Xiao
- China Mobile Research Institute, Beijing 100053, China
| | - Shuai Ma
- China Mobile Research Institute, Beijing 100053, China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
13
|
Rahmani H, Mansouri Majd S, Salimi A, Ghasemi F. Ultrasensitive immunosensor for monitoring of CA 19-9 pancreatic cancer marker using electrolyte-gated TiS 3 nanoribbons field-effect transistor. Talanta 2023; 257:124336. [PMID: 36863296 DOI: 10.1016/j.talanta.2023.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Measuring CA 19-9 antigen level is critical for early diagnosis of pancreatic cancer, monitoring the treatment process, and predicting disease recurrence. The purpose of this research is to assess the application of novel few-layered TiS3 nanoribbons material as a channel material in electrolyte-gated field-effect transistor immunosensor for rapid detection of CA 19-9 antigen as a cancer marker. Accordingly, TiS3 nanoribbons were produced through liquid-phase exfoliation of as-synthesized TiS3 whiskers in N, N-dimethylformamide. Then, dispersed TiS3 nanoribbons were drop cast onto the FET surface to form an active channel material between source and drain electrodes. Subsequently, the channel surface was modified by utilizing 1-naphthylamine (NA) and glutaraldehyde (GA) to strengthen the binding of monoclonal antibody 19-9 to TiS3 nanoribbons. Spectroscopic and microscopic methods were utilized for comprehensive characterizations. Electrical characterization of electrolyte-gated TiS3 nanoribbons field-effect transistor represented a depletion-mode n-type behavior with field-effect mobility of 0.059 cm2/Vs, current on/off ratio of 10.88 and subthreshold swing (SS) of 450.9 mV/decade. With increasing in CA 19-9 antigen concentration from 1.0 × 10-12 U/mL to 1.0 × 10-5 U/mL, a decrease in the drain current occurred with high sensitivity of 0.04 μA/decade and a detection limit of 1.3 × 10-13 U/mL. Additionally, the proposed TiS3 nanoribbons FET immunosensor exhibited outstanding selectivity, and its good performance was compared with an enzyme-linked immunosorbent assay (ELISA) for spiked real human serum samples. The good and satisfactory obtained results of the proposed immunosensor suggest that the developed platform can be a superb candidate for cancer diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Hedyeh Rahmani
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | | | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Foad Ghasemi
- Nanoscale Physics Device Lab (NPDL), Department of Physics, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
14
|
Song P, Ou P, Wang Y, Yuan H, Duan S, Chen L, Fu H, Song J, Liu X. An ultrasensitive FET biosensor based on vertically aligned MoS 2 nanolayers with abundant surface active sites. Anal Chim Acta 2023; 1252:341036. [PMID: 36935147 DOI: 10.1016/j.aca.2023.341036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Molybdenum disulfide (MoS2) nanolayers are one of the most promising two-dimensional (2D) nanomaterials for constructing next-generation field-effect transistor (FET) biosensors. In this article, we report an ultrasensitive FET biosensor that integrates a novel format of 2D MoS2, vertically-aligned MoS2 nanolayers (VAMNs), as the channel material for label-free detection of the prostate-specific antigen (PSA). The developed VAMNs-based FET biosensor shows two distinctive advantages. First, the VAMNs can be facilely grown using the conventional chemical vapor deposition (CVD) method, permitting easy fabrication and potential mass device production. Second, the unique advantage of the VAMNs for biosensor development lies in its abundant surface-exposed active edge sites that possess a high binding affinity with thiol-based linkers, which overcomes the challenge of molecule functionalization on the conventional planar MoS2 nanolayers. The high binding affinity between 11-mercaptoundecanoic acid and the VAMNs was demonstrated through experimental surface characterization and theoretical calculations via density functional theory. The FET biosensor allows rapid (within 20 min) and ultrasensitive PSA detection in human serum with simple operations (limit of detection: 800 fg mL-1). This FET biosensor offers excellent features such as ultrahigh sensitivity, ease of fabrication, and short assay time, and thereby possesses significant potential for early-stage diagnosis of life-threatening diseases.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, H3A 0C5, Canada
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology-Shenzhen, 1 Pingshan Road, Shenzhen, 518000, China
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Longyan Chen
- Department of Biomedical, Industrial & Systems Engineering, Gannon University, 109 University Square, Erie, PA, 16541, USA
| | - Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Jun Song
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
| |
Collapse
|
15
|
Police Patil AV, Chuang YS, Li C, Wu CC. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. BIOSENSORS 2023; 13:bios13010125. [PMID: 36671960 PMCID: PMC9855954 DOI: 10.3390/bios13010125] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors have attracted immense attention due to the ease of mass electrode production and the high compatibility of the miniature electric reader, which is beneficial for developing point-of-care diagnostic devices. Electrochemical immunosensors can be divided into label-free and label-based sensing strategies equipped with potentiometric, amperometric, voltammetric, or impedimetric detectors. Emerging nanomaterials are frequently used on electrochemical immunosensors as a highly rough and conductive interface of the electrodes or on nanocarriers of immobilizing capture antibodies, electroactive mediators, or catalyzers. Adopting nanomaterials can increase immunosensor characteristics with lower detection limits and better sensitivity. Recent research has shown innovative immobilization procedures of nanomaterials which meet the requirements of different electrochemical immunosensors. This review discusses the past five years of advances in nanomaterials (metal nanoparticles, metal nanostructures, carbon nanotubes, and graphene) integrated into the electrochemical immunosensor. Furthermore, the new tendency and endeavors of nanomaterial-based electrochemical immunosensors are discussed.
Collapse
Affiliation(s)
- Avinash V. Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Yu-Sheng Chuang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, Tulane University, 1324 Tulane Ave., New Orleans, LA 70112, USA
| | - Ching-Chou Wu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| |
Collapse
|
16
|
Zhu Z, Liang A, Haotian R, Tang S, Liu M, Xie B, Luo A. Application of Biosensors in the Detection of SARS-CoV-2. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Janghorban M, Aradanas I, Kazemi S, Ngaju P, Pandey R. Recent Advances, Opportunities, and Challenges in Developing Nucleic Acid Integrated Wearable Biosensors for Expanding the Capabilities of Wearable Technologies in Health Monitoring. BIOSENSORS 2022; 12:986. [PMID: 36354495 PMCID: PMC9688223 DOI: 10.3390/bios12110986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wearable biosensors are becoming increasingly popular due to the rise in demand for non-invasive, real-time monitoring of health and personalized medicine. Traditionally, wearable biosensors have explored protein-based enzymatic and affinity-based detection strategies. However, in the past decade, with the success of nucleic acid-based point-of-care diagnostics, a paradigm shift has been observed in integrating nucleic acid-based assays into wearable sensors, offering better stability, enhanced analytical performance, and better clinical applicability. This narrative review builds upon the current state and advances in utilizing nucleic acid-based assays, including oligonucleotides, nucleic acid, aptamers, and CRISPR-Cas, in wearable biosensing. The review also discusses the three fundamental blocks, i.e., fabrication requirements, biomolecule integration, and transduction mechanism, for creating nucleic acid integrated wearable biosensors.
Collapse
Affiliation(s)
- Mohammad Janghorban
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Irvyne Aradanas
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sara Kazemi
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philippa Ngaju
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richa Pandey
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
18
|
Label-free and portable field-effect sensor for monitoring RT-LAMP products to detect SARS-CoV-2 in wastewater. Talanta 2022. [PMCID: PMC9637047 DOI: 10.1016/j.talanta.2022.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has proven the need for developing reliable and affordable technologies to detect pathogens. Particularly, the detecting the genome in wastewater could be an indicator of the transmission rate to alert on new outbreaks. However, wastewater-based epidemiology remains a technological challenge to develop affordable technologies for sensing pathogens. In this work, we introduce a label-free and portable field-effect transistor (FET)-based sensor to detect N and ORF1ab genes of the SARS-CoV-2 genome. Our sensor integrates the reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction as a cost-effective molecular detection exhibiting high specificity. The detection relies upon pH changes, due to the RT-LAMP reaction products, which are detected through a simple, but effective, extended-gate FET sensor (EGFET). We evaluate the proposed device by measuring real wastewater samples to detect the presence of SARS-CoV-2 genome, achieving a limit of detection of 0.31 × 10−3 ng/μL for end-point measurement. Moreover, we find the ability of the sensor to perform real-time-like analysis, showing that the RT-LAMP reaction provides a good response after 15 min for concentrations as low as 0.37 ng/μL. Hence, we show that our EGFET sensor offers a powerful tool to detect the presence of the SARS-CoV-2 genome with a naked-eye method, in a straightforward way than the conventional molecular methods for wastewater analysis.
Collapse
|
19
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
20
|
Subramanian A, Azimi M, Leong CY, Lee SL, Santato C, Cicoira F. Solution-Processed Titanium Dioxide Ion-Gated Transistors and Their Application for pH Sensing. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.813535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium dioxide (TiO2) is an abundant metal oxide, widely used in food industry, cosmetics, medicine, water treatment and electronic devices. TiO2 is of interest for next-generation indium-free thin-film transistors and ion-gated transistors due to its tunable optoelectronic properties, ambient stability, and solution processability. In this work, we fabricated TiO2 films using a wet chemical approach and demonstrated their transistor behavior with room temperature ionic liquids and aqueous electrolytes. In addition, we demonstrated the pH sensing behavior of the TiO2 IGTs with a sensitivity of ∼48 mV/pH. Furthermore, we demonstrated a low temperature (120°C), solution processed TiO2-based IGTs on flexible polyethylene terephthalate (PET) substrates, which were stable under moderate tensile bending.
Collapse
|
21
|
Li T, Liang Y, Li J, Yu Y, Xiao MM, Ni W, Zhang Z, Zhang GJ. Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21. Anal Chem 2021; 93:15501-15507. [PMID: 34747596 DOI: 10.1021/acs.analchem.1c03573] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor-derived exosomal miRNAs may have important functions in the onset and progression of cancers and are potential biomarkers for early diagnosis and prognosis monitoring. Yet, simple, sensitive, and label-free detection of exosomal miRNAs remains challenging. Herein, an ultrasensitive, label-free, and stable field-effect transistor (FET) biosensor based on a polymer-sorted high-purity semiconducting carbon nanotube (CNT) film is reported to detect exosomal miRNA. Different from conventional CNT FETs, the CNT FET biosensors employed a floating gate structure using an ultrathin Y2O3 as an insulating layer, and assembled Au nanoparticles (AuNPs) on Y2O3 as linkers to anchor probe molecules. A thiolated oligonucleotide probe was immobilized on the AuNP surface of the sensing area, after which miRNA21 was detectable by monitoring the current change before and after hybridization between the immobilized DNA probe and target miRNA. This method achieved both high sensitivity (LOD: 0.87 aM) and high specificity. Furthermore, the FET biosensor was employed to test clinical plasma samples, showing significant differences between healthy people and breast cancer patients. The CNT FET biosensor shows the potential applications in the clinical diagnosis of breast cancer.
Collapse
Affiliation(s)
- Tingxian Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yuqi Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Meng-Meng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| |
Collapse
|
22
|
Hao S, Liu C, Chen X, Zong B, Wei X, Li Q, Qin H, Mao S. Ti 3C 2T x MXene sensor for rapid Hg 2+ analysis in high salinity environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126301. [PMID: 34116272 DOI: 10.1016/j.jhazmat.2021.126301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Mercury is one of the leading chemicals of concern and receives much attention in environmental safety. It is of great necessity to develop advanced Hg2+ analysis method for rapid detection and monitoring. Field-effect transistor (FET) sensor, an emerging electronic sensor, has received great attention in environmental analysis since it has unique advantages in achieving rapid analysis of chemicals. Herein, an FET sensor is constructed with Ti3C2Tx MXene as the channel material to detect Hg2+ in water. The sensor displays rapid and selective response to Hg2+. Moreover, the sensor achieves satisfactory performance in Hg2+ detection in high salinity environment (1 M NaCl), which benefits its applications in real water analysis. Based on the investigation of sensing mechanism, the strong response of Ti3C2Tx MXene FET sensor to Hg2+ is due to the adsorption and reduction of Hg2+ to Hg+ on the Ti3C2Tx surface. This reported label-free Ti3C2Tx MXene platform can detect Hg2+ in high salinity environment with high specificity, which has significant application potential for on-site monitoring and risk assessment of Hg2+ in aqueous systems.
Collapse
Affiliation(s)
- Sibei Hao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengbin Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
23
|
Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemical immunosensors (EI) have been widely investigated in the last several years. Among them, immunosensors based on low-dimensional materials (LDM) stand out, as they could provide a substantial gain in fabricating point-of-care devices, paving the way for fast, precise, and sensitive diagnosis of numerous severe illnesses. The high surface area available in LDMs makes it possible to immobilize a high density of bioreceptors, improving the sensitivity in biorecognition events between antibodies and antigens. If on the one hand, many works present promising results in using LDMs as a sensing material in EIs, on the other hand, very few of them discuss the fundamental interactions involved at the interfaces. Understanding the fundamental Chemistry and Physics of the interactions between the surface of LDMs and the bioreceptors, and how the operating conditions and biorecognition events affect those interactions, is vital when proposing new devices. Here, we present a review of recent works on EIs, focusing on devices that use LDMs (1D and 2D) as the sensing substrate. To do so, we highlight both experimental and theoretical aspects, bringing to light the fundamental aspects of the main interactions occurring at the interfaces and the operating mechanisms in which the detections are based.
Collapse
|