1
|
Li H, Wang D, Liu W, Ma Z, Wang D, Li Y, Huan W, Zhang Y. A LMOF/MIP paper-based chip and analysis of tetracycline in foodstuff with sample-to-answer performance. Talanta 2025; 281:126879. [PMID: 39293247 DOI: 10.1016/j.talanta.2024.126879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The development of high-performance specific sensors is promising for the rapid detection of harmful residues in animal-derived foods. Recently, luminescent metal-organic framework/molecularly imprinted polymer (LMOF/MIP) materials have been developed as ideal candidates for the analysis of harmful residues. Here, we reported a simple fabrication protocol of paper-based chip through in-situ growth of LMOF on a negatively charged modified filter paper, a paper-based molecularly imprinting layer (FP@BA-Eu@MIP) was thereafter successfully prepared via the boronate affinity-based controllable oriented surface imprinting strategy. The paper-based chips obtained were used to construct a rapid test strip of tetracycline (TC). After addition of TC, significant fluorescence changes on the surface of the FP@BA-Eu@MIP paper-based chip could be observed from blue to red via inner filter effect and photo-induced electron transfer under the excitation of 360 nm. The adsorption kinetics was explored in detail. The presented strip exhibited satisfied selectiveness and sensitivity with a limit of detection of 8.47 μg L-1 for TC. It was confirmed that LMOF/MIP as a biomimetic recognition module can play a crucial role in enrichment and fluorescence response. This study provided a real application case for an in-situ fabricated fluorescence paper-based chip in rapidly detecting harmful residues.
Collapse
Affiliation(s)
- Han Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghui Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhan Ma
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dingnan Wang
- Institute of Zhejiang Aquatic Product Technology, Hangzhou, 310000, China
| | - Yang Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yiming Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Boontongto T, Santaladchaiyakit Y, Burakham R. Molecularly imprinted polymer-coated paper for the selective extraction of organophosphorus pesticides from fruits, vegetables, and cereal grains. Talanta 2024; 270:125536. [PMID: 38101032 DOI: 10.1016/j.talanta.2023.125536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Biodegradable molecularly imprinted polymer-coated paper (MIP@paper) was effectively produced by polymerization using azinphos-methyl as a template molecule, terephthalic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and aqueous ethanol as a green porogenic solvent. The material was subsequently composited onto cellulose paper, which served as the natural substrate, by dip coating with the aid of chitosan and citric acid natural adhesive. The properties, such as static and dynamic adsorption, selectivity, and reusability, were assessed. At rapid adsorption equilibrium (10 min), the MIP@paper had a high adsorption capacity in the range of 2.5-3.7 mg g-1 and good recognition with imprinting factors up to 2.1. In addition, the proposed MIP@paper was utilized efficiently as a sorbent for dispersive solid phase extraction (d-SPE) of eight organophosphorus pesticides (OPPs) prior to high-performance liquid chromatography (HPLC) analysis. The d-SPE-HPLC method displayed low detection limits of 1.2-4.5 μg kg-1 and significant enrichment factors (up to 320-fold). The proposed method was effectively applied for the determination of OPP residues in agricultural products, including fruits, vegetables, and cereal grains, with satisfactory spiked recoveries (80.1-119.1 %). Thus, the MIP@paper material provided a selective and environmentally favorable method for extracting and determining organophosphorus pesticides.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Jia M, Xu F, Zhai F, Yu X, Du M. An all-in-one portable colorimetric detection platform for sensitive detection of bisphenol A based on target-mediated CeO 2@ZIF-8/Apt biocomposites. J Colloid Interface Sci 2024; 653:1805-1816. [PMID: 37845127 DOI: 10.1016/j.jcis.2023.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
BPA aptamers functionalized cerium oxide nanoparticles encapsulated in zeolitic imidazolate framework-8 (CeO2@ZIF-8/Apt) were developed to fabricate an all-in-one portable platform for on-site quantitative detection of BPA. By combining biocomposites with a 3,3',5,5'-tetramethylbenzidine (TMB)-based sodium alginate (SA) hydrogel and smartphone-based RGB analysis, highly sensitive and convenient monitoring of BPA was achieved. CeO2@ZIF-8 composites were constructed using a novel surfactant-modified concentration-controlled synthesis strategy. After being functionalized with BPA aptamers, CeO2@ZIF-8/Apt biocomposites were used as target-response colorimetric probes for target recognition and signal transduction. The oxidase-like activity of CeO2@ZIF-8 was effectively sealed by BPA aptamers and controllably released in a concentration-dependent manner through aptamer-BPA reactions. Utilizing SA hydrogels containing TMB in the caps, a one-step sample addition and one-pot detection can be conveniently achieved and reliably quantified by smartphone-based RGB analysis in an instrument-free way. The detection range of this portable detection platform is 50 pg/mL to 500 ng/mL with limit of detection calculated as 34.88 pg/mL, comparable to that of conventional detection in the solution system (4.57 pg/mL). The recoveries in tap water, apple juice, and milk ranged from 91.02 % and 106.75 %. This work contributes new insights into the design of all-in-one detection platforms for contaminants monitoring in resource-constrained regions.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| | - Fupei Xu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Fei Zhai
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoying Yu
- Inspection and Testing Center of Rushan, Weihai 264500, China
| | - Meixia Du
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Kumar P, Shimali, Chamoli S, Khondakar KR. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective. Methods 2023; 220:69-78. [PMID: 37951559 DOI: 10.1016/j.ymeth.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Continuous exposure to toxic pollutants highlights the need for sensitive detection technologies that can be rapidly applied in the current world for quick screening of real samples. Bisphenol A (BPA) is one of the most common environmental contaminants, and it has the potential to harm both the environment and human health, notably causing reproductive disorders, cancer, heart disease, infertility, mental disorders, etc. Thus, significant attention has been paid to the detection of BPA and microplastics to promote food safety, environmental health, and human health on a sustainable earth. Among the current technologies, microfluidic based systems have garnered a lot of interest as future diagnostic tools for healthcare applications. Microfluidic devices can be deployed for quick screening and real-time monitoring, with inherent advantages like portability, miniaturisation, highly sensing tool and ease of integration with various detection systems. Optical and electrochemical sensors are two major analytical tools found in almost all microfluidic-based devices for ultrasensitive BPA and microplastics determination. In this review, we have evaluated and discussed microfluidic-based detection methods for BPA and microplastics.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shimali
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shivangi Chamoli
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | | |
Collapse
|
5
|
Kubiak A, Stachowiak M, Cegłowski M. Unveiling the Latest Developments in Molecularly Imprinted Photocatalysts: A State-of-the-Art Review. Polymers (Basel) 2023; 15:4152. [PMID: 37896395 PMCID: PMC10611036 DOI: 10.3390/polym15204152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Responding to the growing concerns about environmental pollutants, scientists are increasingly turning to innovative solutions rooted in the field of environmental science. One such promising avenue combines the robustness of traditional photocatalysis with the precision of molecular imprinting, leading to the proposition of molecularly imprinted photocatalysts (MIPCs). These MIPCs hold the potential to specifically target and eliminate environmental pollutants, marking them as a promising tool in modern environmental remediation. As researchers delve deeper into this field, the design and optimization of MIPCs have become hotbeds for scientific inquiry. This comprehensive overview delves into the multifaceted approaches to MIPC design, elucidating on aspects like the selection of appropriate photocatalytic bases, the pivotal role of templates, the choice of monomeric building blocks, and the integration of effective cross-linking agents. However, as with all burgeoning technologies, the development of MIPCs is not without its challenges. These potential impediments to the successful innovation and implementation of MIPCs are also explored.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL-61614 Poznan, Poland; (A.K.); (M.S.)
| |
Collapse
|
6
|
Senolsun A, Akyilmaz E. A new non-enzymatic biosensor for the determination of bisphenol-A. Food Chem 2023; 426:136536. [PMID: 37302303 DOI: 10.1016/j.foodchem.2023.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new non-enzymatic carbon paste biosensor was developed for the determination of Bisphenol-A (BPA) based on Multiwalled Carbon Nanotube (MWCNT) modified Myoglobin (Mb). The measurement principle of the biosensor was developed based on the inhibition effect of BPA on the heme group of myoglobin in the presence of hydrogen peroxide. With the designed biosensor, measurements were taken in the potential range of (-0.15 V & +0.65 V) using the differential pulse voltammetry (DPV) method in the medium containing K4[Fe(CN)6]. The linear range for BPA was determined to be 100-1000 µM. Response time was calculated as 16 s. The limit of detection was set at 89 μM. As a result, it has been proven that MWCNT modified myoglobin based biosensor is an alternative method that can be used for BPA determination, giving very sensitive and fast results.
Collapse
Affiliation(s)
- Asude Senolsun
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Erol Akyilmaz
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
7
|
Wang X, Liu C, Cao Y, Cai L, Wang H, Fang G. A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal-Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk. Foods 2023; 12:foods12112255. [PMID: 37297499 DOI: 10.3390/foods12112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Developing sensitive and effective methods to monitor oxytetracycline residues in food is of great significance for maintaining public health. Herein, a fluorescent sensor (NH2-UIO-66 (Zr)@MIP) based on a molecularly imprinted polymer-coated amino-functionalized zirconium (IV) metal-organic framework was successfully constructed and first used for the ultrasensitive determination of oxytetracycline. NH2-UIO-66 (Zr), with a maximum emission wavelength of 455 nm under 350 nm excitation, was prepared using a microwave-assisted heating method. The NH2-UIO-66 (Zr)@MIP sensor with specific recognition sites for oxytetracycline was then acquired by modifying a molecularly imprinted polymer on the surface of NH2-UIO-66 (Zr). The introduction of NH2-UIO-66 (Zr) as both a signal tag and supporter can strengthen the sensitivity of the fluorescence sensor. Thanks to the combination of the unique characteristics of the molecularly imprinted polymer and NH2-UIO-66 (Zr), the prepared sensor not only exhibited a sensitive fluorescence response, specific identification capabilities and a high selectivity for oxytetracycline, but also showed good fluorescence stability, satisfactory precision and reproducibility. The fabricated sensor displayed a fluorescent linear quenching in the OTC concentration range of 0.05-40 μg mL-1, with a detection limit of 0.012 μg mL-1. More importantly, the fluorescence sensor was finally applied for the detection of oxytetracycline in milk, and the results were comparable to those obtained using the HPLC approach. Hence, the NH2-UIO-66 (Zr)@MIP sensor possesses great application potential for the accurate evaluation of trace oxytetracycline in dairy products.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Liu Y, Zhang Y, Niu J, Nie L, Huang S, Liu H, Yuan S, Zhou Q. Selective fluorescent probe for sensitive determination of bisphenol A based on molecularly imprinted polymers decorated carbon dots derived from citric acid and ethylenediamine. CHEMOSPHERE 2023; 324:138303. [PMID: 36871803 DOI: 10.1016/j.chemosphere.2023.138303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical and poses a grave threat to the human health. Herein, a fluorescent probe constructed with molecularly imprinted polymers decorated carbon dots (CDs@MIPs) was proposed for determination of BPA with high selectivity. The CDs@MIPs were constructed using BPA, 4-vinylpyridine and ethylene glycol dimethacrylate as template, functional monomer and cross linker, respectively. The obtained fluorescent probe not only owned a highly selective recognition function derived from MIPs but also displayed an excellent sensitivity for sensing BPA stemmed from CDs. The fluorescence intensity of CDs@MIPs was varied before and after the removal of BPA templates. The fluorescent decrease fraction of the fluorescent probe demonstrates a nice linearity in BPA concentration range of 10-2000 nM (r2 = 0.9998) and the detection limit is as low as 1.5 nM. The fluorescent probe was triumphantly utilized to sense the level of BPA in real aqueous and plastic samples with good results. Moreover, the fluorescent probe offered a wonderful means for fast identification and sensitive detection of BPA from environmental aqueous samples.
Collapse
Affiliation(s)
- Yongli Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China; School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Linchun Nie
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Huanhuan Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, PR China.
| |
Collapse
|
9
|
Wang J, Yu J, Yu Y, Luo Z, Li G, Lin X. Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media. Food Chem 2023; 405:134806. [DOI: 10.1016/j.foodchem.2022.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
|
10
|
Du W, Liu J, Li H, Deng C, Luo J, Feng Q, Tan Y, Yang S, Wu Z, Xiao F. Competition-Based Two-Dimensional Photonic Crystal Dually Cross-Linked Supramolecular Hydrogel for Colorimetric and Fluorescent Dual-Mode Sensing of Bisphenol A. Anal Chem 2023; 95:4220-4226. [PMID: 36786428 DOI: 10.1021/acs.analchem.2c05662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Bisphenol A (BPA), one of the most abundantly produced endocrine disrupting chemicals, is widely used in everyday plastic products and thus must be monitored. Multimode sensing platforms are able to combine the advantages of different strategies while solving the issues of inaccurate test results of single signal sensing. However, the exploration in this field is limited due to the compromise of sensing conditions and inevitable mutual interferences of different systems. Herein, we constructed a two-dimensional photonic crystal dually cross-linked supramolecular hydrogel (2DPCDCSH) by utilizing a host-guest pair of β-cyclodextrin (β-CD) and tert-butyl (t-Bu) as the second cross-linking for colorimetric and fluorescent dual-mode sensing of BPA. Based on the fact that BPA can act as a competitive guest to break the host-guest interaction between β-CD and t-Bu, the cross-linking density decreased and an expansion-induced structural color change occurred. Sensitive and selective BPA detection can be easily achieved by measuring the Debye diffraction ring diameter or observing the color change of 2DPC with a detection limit of 1 μg mL-1. Moreover, the formation of the β-CD/BPA complex gave a significant enhancement of the intrinsic fluorescence of BPA, obtaining a detection limit of 0.001 μg mL-1. The two sensing systems can share the same reaction condition and yield a wider dynamic response range than the single signal strategy. Overall, the proposed method presented an efficient, rapid, cost-effective, and regenerative dual-mode method for BPA analysis and shed new insights for the design of diversified sensing platforms.
Collapse
Affiliation(s)
- Wenfang Du
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jie Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenyi Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Luo
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qianqian Feng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Song J, He K, Xing B, Pei Y, Wang D, Wang Y, Li S, Li J, Huan W, Zhang Y, Hammock BD. Rapid Measurement of Residual Kanamycin Using Highly Specific Biomimetic Recognition Paper-Based Chip. Anal Chem 2022; 94:17567-17576. [PMID: 36458677 PMCID: PMC9942939 DOI: 10.1021/acs.analchem.2c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The development of highly specific biomimetic recognition material is a challenge for rapid detection of harmful residues in foodstuff. In this study, a paper-based boronate affinity metal-organic framework/molecularly imprinted polymer microfluidic chip (FZS-BA@MIP) was constructed based on the in situ construction strategy, which was also designed as a highly specific biomimetic recognition module. Here, the homogeneous zeolitic imidazole framework-8 (ZIF-8) membrane served as a great scaffold and enrichment layer. Besides, the recognition layer of MIP was prepared based on a highly oriented boronate affinity surface imprinting strategy. With the aid of the liquid flow channel, the highly specific enrichment and visual detection for antibiotic residues like kanamycin in actual products were achieved on the paper chip module of an integrated lateral flow platform. The whole analysis process could be accomplished within 30 min. In brief, this study offered a new integrated biomimetic recognition platform for visually detecting harmful veterinary residues containing cis-diols, which demonstrated promising commercial value in point-of-care testing of foodborne hazardous compounds.
Collapse
Affiliation(s)
- Jian Song
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bingcong Xing
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yong Pei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Dingnan Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Yang Wang
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Shiyan Li
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yiming Zhang
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Bruce. D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Hu R, Yan Y, Jiang L, Huang C, Shen X. Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Mikrochim Acta 2022; 189:324. [PMID: 35939150 DOI: 10.1007/s00604-022-05405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 μmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 μmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
15
|
Xu S, Xu Z, Liu Z. Paper-Based Molecular-Imprinting Technology and Its Application. BIOSENSORS 2022; 12:595. [PMID: 36004991 PMCID: PMC9405720 DOI: 10.3390/bios12080595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Paper-based analytical devices (PADs) are highly effective tools due to their low cost, portability, low reagent accumulation, and ease of use. Molecularly imprinted polymers (MIP) are also extensively used as biomimetic receptors and specific adsorption materials for capturing target analytes in various complex matrices due to their excellent recognition ability and structural stability. The integration of MIP and PADs (MIP-PADs) realizes the rapid, convenient, and low-cost application of molecular-imprinting analysis technology. This review introduces the characteristics of MIP-PAD technology and discusses its application in the fields of on-site environmental analysis, food-safety monitoring, point-of-care detection, biomarker detection, and exposure assessment. The problems and future development of MIP-PAD technology in practical application are also prospected.
Collapse
Affiliation(s)
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
16
|
Wang L, Wang L, Zhang Y, Zhao Z, Liu C, Li M, Liu J, Wang S, Yang D, Luo F, Yan J. LS-HB-Mediated Photodynamic Therapy Inhibits Proliferation and Induces Cell Apoptosis in Melanoma. Mol Pharm 2022; 19:2607-2619. [PMID: 35485954 DOI: 10.1021/acs.molpharmaceut.2c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlorin e6-C-15-ethyl ester (LS-HB), a newly identified photosensitizer, was isolated from chlorin e6. The mechanism of tumor cell death induced by photodynamic therapy with LS-HB (LS-HB-PDT) is still unknown. Here, we investigated the photophysical properties of LS-HB, evaluated the antitumor effect on melanoma in vitro and in vivo, and explored its possible mechanisms. LS-HB not only has an optimal spectral band of red wavelength (660 nm) for photosensitization but also has favorable photostability. More importantly, LS-HB-PDT elicited a potent dose-dependent phototoxic effect in vitro. We discovered that LS-HB located in the mitochondria of B16F10 cells was able to generate excess reactive oxygen species, which subsequently resulted in mitochondrial membrane potential loss and induced apoptosis via caspase-9 and caspase-3 pathways. Moreover, PDT with LS-HB markedly inhibited the growth of melanoma in vivo. Therefore, LS-HB is expected to be an effective potential photosensitizer in antitumor therapy.
Collapse
Affiliation(s)
- Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Zhang
- Fuzhou Neuro-Psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350008, China
| | - Zhiyu Zhao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiajing Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Dong Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
17
|
Pang YH, Wang YY, Shen XF, Qiao JY. Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Mikrochim Acta 2022; 189:189. [PMID: 35412090 DOI: 10.1007/s00604-022-05297-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
A novel ratiometric electrochemical sensor was developed based on a carbon cloth electrodeposited with silver nanoparticles and drop-coated by covalent organic framework (COF-LZU1) for simultaneous determination of bisphenol A (BPA) and bisphenol S (BPS). Carbon cloth exhibited a significantly larger electrochemical active area than common glassy carbon electrodes (27.5 times). Silver nanoparticles not only provided a stable reference signal but also enhanced electroactivity for the oxidation of BPA and BPS. COF-LZU1 with good adsorption performance and large periodic π-arrays promoted the enrichment of BPA and BPS to further increase the current response. Compared with the traditional single-signal electrochemical sensor, the developed ratiometric sensor exhibited better reproducibility and a wider linear range for BPA and BPS from 0.5 to 100 μM with a limit of detection of 0.15 μM. Furthermore, the developed sensor showed excellent stability and superior anti-interference ability. The real sample analysis for BPA and BPS has been successfully carried out in mineral water, electrolyte drink, tea, juice, and beer with recoveries of 88.3-111.7%. The developed ratiometric sensor is expected to be a candidate for the preparation of other electrochemical sensors and the analysis of additional practical samples.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
18
|
Liu M, Xia S, Liu Z, Ma T, Liu Z, Li Y, Zou D. Luminescent porous metal–organic gels for efficient adsorption and sensitive detection of chlortetracycline hydrochloride assisted by smartphones and test paper-based analytical device. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01669e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing dual functional materials for chlortetracycline hydrochloride (CTC) adsorption and detection is of great importance for wastewater treatment and pollution monitoring. Herein, three novel (Fe-Tb) JLUE-MOGs are synthesized through the...
Collapse
|
19
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|
20
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
Song M, Sun H, Yu J, Wang Y, Li M, Liu M, Zhao G. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37212-37222. [PMID: 34327984 DOI: 10.1021/acsami.1c10242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a label-free nonenzymatic photoelectrochemical (PEC) sensor is successfully developed for the detection of a typical pollutant, microcystin-LR (MC-LR), based on a visible-light-responsive alloy oxide, with highly ordered and vertically aligned Ti-Fe-O nanotubes (NTs) as substrates. Ti-Fe-O NTs consisting mainly of TiO2 and atomically doped Fe2O3 are in situ prepared on a Ti-Fe alloy by electrochemical anodic oxidation. Using a simple electrochemical deposition technique, reduced graphene oxide (RGO) could be grown onto Ti-Fe-O NTs, exhibiting significant bifunctions. It not only provides an ideal microenvironment for functionalization of molecularly imprinted polymers (MIPs) on the surface but also serves as the PEC signal amplification element because of its outstanding conductivity for photons and electrons. The designed MIP/RGO/Ti-Fe-O NT PEC sensor exhibits high sensitivity toward MC-LR with a limit of detection as low as 10 pM. High selectivity toward MC-LR is also proven for the sensor. A promising detection platform not only for MC-LR but also for other pollutants has therefore been provided.
Collapse
Affiliation(s)
- Menglin Song
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Huanhuan Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Jing Yu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Mingfang Li
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
22
|
Mamipour Z, Nematollahzadeh A, Kompany-Zareh M. Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: a review. Mikrochim Acta 2021; 188:279. [PMID: 34331135 DOI: 10.1007/s00604-021-04930-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers are efficient and selective adsorbents which act as artificial receptors for desired compounds with the ability to recognize the size, shape, and functional groups of the compounds simultaneously. A molecularly imprinted polymer is prepared by the polymerization of functional monomers around a template (analyte) molecule. Afterward, the removal of the template from the polymer matrix leaves a selective cavity behind. The fabrication and development of molecularly imprinted polymers grew rapidly, due to their low cost, simple preparation, selectivity, sensitivity, and stable physicochemical properties. Traditionally, molecularly imprinted polymers can be synthesized using two main methods, namely bulk and surface imprinting. For more efficient use of the latter method, researchers have developed molecularly imprinted polymers grafted on the solid-phase matrix (substrate). This grafting technique would be particularly useful for surface imprinting of macromolecules, such as proteins. Cellulose fibers of papers with unique properties such as being abundant, retaining a porous structure, having good adsorption properties, and possessing hydroxyl groups naturally have gained much attention as substrate. The goal of this review is to introduce molecularly imprinted polymer-grafted or molecularly imprinted polymer-coated paper, as an interesting, simple, and efficient method in the detection and separation of small and large molecules. Therefore, in the present paper, several recent preparation techniques and applications of molecularly imprinted polymer-grafted paper are reviewed and discussed in detail. Green, cost-effective, selective, and sensitive paper-based sensor prepared via grafting molecularly imprinted polymer on paper surface with the potential use for online detection trace of analytes in the point-of-care testing.
Collapse
Affiliation(s)
- Zahra Mamipour
- Department of Chemistry, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran.,Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Ali Nematollahzadeh
- Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran. .,Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|