1
|
Zou Y, Zhang Y, Wang HZ, Jiang MW, Gui GF, Fu D, Ren W. Dual-mode ratiometric fluorescent and colorimetric sensor for rapid visual detection of Hg 2+ using poly(T)-tailed ssDNA-silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125751. [PMID: 39826171 DOI: 10.1016/j.saa.2025.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg2+, meanwhile the green emission of AgNCs increases synchronously. Thus ssDNA-AgNCs as a single probe shows excellent ratiometric fluorescence sensing for Hg2+ with a detection limit of 0.2 nM, and Hg2+ as low as 10.0 nM can be fluorescently identified by naked eye within 5 min. Moreover, the proposed nanoprobe also exhibits a good ratiometric colorimetric sensing for Hg2+, and the obvious color change of nanoprobe also enables a rapid and visual monitoring of Hg2+ under visible light. The dual mode ratiometric response of Hg2+ can be ascribed to the rapid redox reaction between Hg2+ and Ag0 on the surface of AgNCs and the subsequent formation of silver amalgam. The resultant dual-mode ratiometric sensor has been successfully applied to the determination of Hg2+ in environmental water samples. This study provides a new strategy to synthesize dual-emission AgNCs by scientifically designing terminus sequence of ssDNA template, and develops a facile and efficient single-probe and dual-mode ratiometric sensor for visual monitoring of Hg2+.
Collapse
Affiliation(s)
- Yu Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Ying Zhang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China.
| | - Hui Zhu Wang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Meng Wei Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China
| | - Guo Feng Gui
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700 PR China
| | - Dong Fu
- Key Laboratory of Low-cost Rural Environmental Treatment Technology at Sichuan University of Arts and Science, Education Department of Sichuan Province, Dazhou 635000 PR China
| | - Wang Ren
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China.
| |
Collapse
|
2
|
Wong ZW, New SY. Recent Advances in Biosensors Based on Hybridization Chain Reaction and Silver Nanoclusters. SMALL METHODS 2025; 9:e2401436. [PMID: 39757735 DOI: 10.1002/smtd.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields. Nonetheless, limited studies and the lack of systematic guidelines for HCR-AgNCs systems have hindered research progress, despite their potential. This review aims to address this gap by providing a comprehensive overview of HCR-AgNCs biosensors, facilitating further innovation in this field. The working principles, performance factors, and complementary features are discussed. Thereafter, reported HCR-AgNCs studies are assessed, emphasizing their distinct sensing mechanisms (e.g., fluorogenic, electrochemical), applications across various fields, and challenges in adopting the hybrid sensors. Drawing from the experience developing multiple HCR-AgNCs sensors, insights and guidelines for designing and developing HCR-AgNCs systems are provided for future researchers. Finally, prospective directions in HCR-AgNCs research, including multiplex assays and integration with emerging technologies, are explored to guide future advancements. The synergistic combination of HCR and AgNCs as a hybrid biosensor holds promise for addressing pressing challenges in healthcare, environmental monitoring, and beyond, paving the way for next-generation biosensing technologies.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| |
Collapse
|
3
|
Zheng Y, Wang Q, Jin Z, Zhang T, Huang J, Ye J, Yang X. Label-free miRNA fluorescent biosensors based on duplex-specific nucleases and silver nanoclusters. Analyst 2025; 150:481-488. [PMID: 39775264 DOI: 10.1039/d4an01407c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs) are considered reliable biomarkers for a variety of diseases. However, their low abundance in organisms and high sequence similarity of homologous miRNAs make their accurate detection challenging. Here, we constructed a novel fluorescent biosensor for the detection of miRNA-155, a potential biomarker of neuroinflammation, based on duplex-specific nuclease (DSN) assisted amplification and DNA-templated silver nanoclusters (DNA-AgNCs) as fluorescence signal probes. DSN-assisted amplification can transform unstable miRNA into stable DNA and amplify the miRNA signal at the same time. Using DNA-AgNCs as fluorescence signal probes for biosensors can avoid complex labeling processes and reduce costs. The biosensor shows excellent selectivity, reproducibility, a wide linear range (1-600 nM) with a detection limit of 0.86 nM, and potentiality for real sample detection. This work provides a potential universal biosensing platform for miRNA detection.
Collapse
Affiliation(s)
- Yuxin Zheng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Qian Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Tingting Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiurong Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| |
Collapse
|
4
|
Kim KB, Kim SH, Yoo SM. Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. BIOSENSORS 2024; 14:625. [PMID: 39727889 DOI: 10.3390/bios14120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoclusters (NCs) are promising alternatives to organic dyes and quantum dots. These NCs exhibit unique physical and chemical properties, such as fluorescence, chirality, magnetism and catalysis, which contribute to significant advancements in biosensing, biomedical diagnostics and therapy. Through adjustments in composition, size, chemical environments and surface ligands, it is possible to create NCs with tunable optoelectronic and catalytic activity. This review focuses on the integration of aptamers with metal NCs, detailing molecular detection strategies that utilise the effect of aptamers on optical signal emission of metal NC-based biosensing systems. This review also highlights recent advancements in biosensing and biomedical applications, as well as illustrative case studies. To conclude, the strengths, limitations, current challenges and prospects for metal NC-based systems were examined.
Collapse
Affiliation(s)
- Ki-Beom Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Ho Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Agarwal P, Kavya, Pal N. Nucleoside monophosphate-templated green synthesis of AgNP: effects of reducing agents on the optical properties of as-synthesized AgNPs. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:275. [DOI: 10.1007/s11051-024-06185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/17/2024] [Indexed: 01/06/2025]
|
6
|
Raina J, Kaur G, Singh I. Recent progress in nanomaterial-based aptamers as biosensors for point of care detection of Hg 2+ ions and its environmental applications. Talanta 2024; 277:126372. [PMID: 38865954 DOI: 10.1016/j.talanta.2024.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Among the foremost persistent heavy metal ions in the ecosystem, mercury (Hg2+) remains intimidating to the environment by producing a catastrophic effect on the environment as well as on mankind due to the exacerbation of anthropogenic activities. Therefore, it has become necessary to develop superlative techniques for its detection even at low concentrations. The conventional approaches for Hg2+ ions are quite laborious, and expensive, and require expertise in operating sophisticated instruments. To overcome these limitations, aptamer-based biosensors emerged as a promising tool for its detection. DNA-based aptamers have evolved as a significant technique by detecting them even in ppb levels. This review outlines the progress in aptamer-based biosensors from the year 2019-2023 by inducing changes in the electrochemical signal or by fluorescent/colorimetric approaches. The electrochemical sensors used nanomaterial electrodes for increasing the sensitivity whereas fluorescent and colorimetric sensors exhibit quenching or strong fluorescence in the presence of Hg2+ ions depending upon the prevailing mechanism or visible color changes. This perturbation in the signals could be attributed to the formation of the T-Hg2+ -T complex with the aptamers in the presence of ions revealing its real-time and biological applications in living or cancerous cells. Furthermore, next-generation biosensors are suggested to bring a paradigm shift to the integration of high-end smartphones, machine learning, artificial intelligence, etc.
Collapse
Affiliation(s)
- Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India, 144411
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India, 144411.
| |
Collapse
|
7
|
Zhou B, Khan IM, Ding X, Niazi S, Zhang Y, Wang Z. Fluorescent DNA-Silver nanoclusters in food safety detection: From synthesis to application. Talanta 2024; 273:125834. [PMID: 38479031 DOI: 10.1016/j.talanta.2024.125834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
In recent years, the conventional preparation of silver nanoclusters (AgNCs) has attracted much attention due to their ultra-small size, tunable fluorescence, easy-to-engineer, as well as biocompatible material. Moreover, its great affinity towards cytosine bases on single-stranded DNA has led to the construction of biosensors, especially aptamers, for a broad variety of applications in food safety and environmental protection. In past years, numerous researchers paid attention to the construction of AgNCs aptasensor. Therefore, this review will be an effort to summarize the synthetic strategy along with the influences of factors on synthesis, categorize the sensing mechanism of aptamer-functionalized AgNCs biosensors, as well as their specific applications in food safety detection including heavy metal, toxin, and foodborne pathogenic bacteria. Furthermore, a brief conclusion and outlook regarding the prospects and challenges of their applications in food safety were drawn in line with the developments in DNA-AgNCs.
Collapse
Affiliation(s)
- Bingxuan Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Xiaowei Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
8
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
9
|
Li R, Zhu L, Yang M, Liu A, Xu W, He P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem 2024; 431:137126. [PMID: 37579613 DOI: 10.1016/j.foodchem.2023.137126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Mycotoxin contamination in cereal is a global concern, threatening food safety and human health, necessitating the development of rapid on-site methods. Here, a label- and enzyme-free biosensor was developed based on aptamer-regulated DNA-silver nanoclusters (AgNCs) for rapid detection of ochratoxin A (OTA). A novel DNA-templated AgNCs emitting strong red fluorescence was designed and synthesized in this study. The partial sequence of the DNA template was selected from the complementary OTA aptamer (Apt-OTA) sequence, which can quench fluorescence from the AgNCs via hybridization in the absence of OTA. In the presence of OTA, the high OTA-Aptamer affinity prevented the Apt-OTA from quenching the AgNCs, resulting in "turn on" of the fluorescence. This biosensor eliminated the use of costly reagents, complex pretreatments, and sophisticated equipment, which could realize the point-of-care testing (POCT) of OTA with a limit of detection (LOD) of 1.3 nM and a detection time of 45 min.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Min Yang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Li R, Pan Y, Sun C, Lin C, Chen S, Wu Y, Fu F. A broad-applicability method for mercury speciation in various seafoods using microwave-assisted extraction and ion chromatography-inductively coupled plasma mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1802-1811. [PMID: 36943735 DOI: 10.1039/d3ay00289f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Almost all marine organisms contain both inorganic and organic mercury, and thus it is extremely important to determine mercury species in seafood to objectively and scientifically assess the health risk posed by mercury. We herein developed a broad-applicability microwave-assisted extraction method and a robust ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) method for the speciation analysis of mercury in various seafood samples including seaweeds, fishes and shellfishes. The extraction method has broad adaptability, it can be used to simultaneously extract mercury species from various seafood samples including seaweeds, fishes and shellfishes without altering the chemical species of mercury, with an extraction efficiency >90%. Especially, the seafood extract obtained with the extraction method can be directly used for the following IC-ICP-MS determination of mercury species without additional pretreatment. The IC-ICP-MS method used low-cost cation guard columns as the separation column, and has an instrument detection limit of 0.02-0.05 ng mL-1 for Hg2+, CH3Hg+ and C2H5Hg+. The developed extraction and IC-ICP-MS methods have been successfully used to determine Hg2+, CH3Hg+ and C2H5Hg+ in various seaweeds, fishes and shellfishes without the matrix effect, with a method detection limit of 2.4-6.0 ng g-1 dried weight, a recovery of 92-105%, and a relative standard deviation (RSD, n = 5) of less than or equal to 6%. The success of this study offers a reliable and universal approach for the speciation analysis of mercury in seafood, which may provide the database for objectively assessing the health risks of mercury in seafood and ensuring the safety of consumption of seafood.
Collapse
Affiliation(s)
- Ruiling Li
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yuquan Pan
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
11
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Recent developments in biosensing strategies for the detection of small molecular contaminants to ensure food safety in aquaculture and fisheries. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
14
|
Chen Z, Lv W, Yang C, Ping M, Fu F. Sensitive detection and intracellular imaging of free copper ions based on DNA-templated silver nanoclusters aggregation-inducing fluorescence enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121734. [PMID: 35970089 DOI: 10.1016/j.saa.2022.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Free copper ions (Cu+ and Cu2+) have critical toxicity to cells, although copper is an essential element for human body. Hence, sensitive monitoring is crucial to avoid over intake of Cu+/Cu2+. We herein designed a ssDNA sequence (A31) for synthetizing A31-templated silver nanoclusters (AgNCs), and demonstrated that Cu+/Cu2+ can induce the aggregation of A31-templated AgNCs and thus greatly enhanced the fluorescence emission of A31-templated AgNCs. Based on Cu+/Cu2+-induced fluorescence enhancement effect of A31-templated AgNCs, a label-free and signal-on fluorescent sensing platform was developed for the specific and sensitive detection of Cu+/Cu2+ in biological samples and intracellular imaging of Cu+/Cu2+ in cells. The signal-on fluorescent sensing platform could be used to rapidly detect Cu+ and Cu2+ with a detection limit of 0.1 µM within 30 min., and to perform the intracellular imaging of Cu+ and Cu2+ in cells with good cell permeability and biocompatibility. By using the signal-on fluorescent sensing platform, we have successfully detected Cu+ and Cu2+ in cells fluids and human serum with a recovery of 90-104% and a RSD (n = 5) < 5%, and performed the imaging of Cu+/Cu2+ in Hela cells. The developed fluorescent sensing platform has obvious analytical and imaging advantages such as signal-on, simple operation, short analysis time, both Cu+ and Cu2+ detection, similar or higher sensitivity, good cell permeability and biocompatibility, which promising a reliable approach for the rapid and on-site detection or imaging of free copper ions in biological samples in clinical diagnosis.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; College of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 36300, China
| | - Wenchao Lv
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Yang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
15
|
A fast, sensitive, low-cost electrochemical paper-based chip for real-time simultaneous detection of cadmium (Ⅱ) and lead (Ⅱ) via aptamer. Talanta 2022; 247:123548. [DOI: 10.1016/j.talanta.2022.123548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
|
16
|
Luo Y, Cai J, Huang Y, Luo J. Synthesis of Xylan-Click-Quaternized Chitosan via Click Chemistry and Its Application in the Preparation of Nanometal Materials. Molecules 2022; 27:3455. [PMID: 35684393 PMCID: PMC9182352 DOI: 10.3390/molecules27113455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
For the high-valued utilization of hemicelluloses and for realizing the controllable synthesis of NPs, this paper's aim is to combine xylan, chitosan and nanometal materials at the same time. In this research study, firstly, propargyl xylan was synthesized via nucleophilic substitution reaction between xylan and propargyl bromide in NaOH solution. On the other hand, a tosyl group was introduced onto the 6th position of synthesized quaternized chitosan (QCS), and the azide group replaced the tosyl group to obtain 6-amido-QCS (QCS-N3). The synthesis conditions of the above reactions were optimized. Subsequently, the novel xylan-click-QCS polymer was obtained via click reaction between terminal alkyne groups on the xylan chains and azide groups on QCS. Then, AgNPs and AuNPs were synthesized by adopting the xylan-click-QCS polymer as the reducing and stabilizing agent, and the reaction conditions were optimized to obtain well-dispersed and highly stable nanoparticles. There were two kinds of Ag nanomaterials, with diameters of 10~20 nm and 2~5 nm, respectively, indicating the formation of Ag nanoclusters, except for Ag nanoparticles, in this reaction. The diameter of the synthesized AuNPs was 20~30 nm, which possessed a more uniform size distribution. The Ag nanoclusters with a smaller size (2~5 nm) could inhibit MCF-7 cell proliferation effectively, indicating their application potential in cancer therapy. The study gives a new approach to the high-value utilization of biopolymers.
Collapse
Affiliation(s)
- Yuqiong Luo
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.L.); (J.C.)
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, China
| | - Jihai Cai
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.L.); (J.C.)
| | - Yanan Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key, Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510640, China;
| | - Jiwen Luo
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key, Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510640, China;
| |
Collapse
|
17
|
Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Yang C, Deng H, He J, Zhang X, Gao J, Shang X, Zuo S, Yuan R, Xu W. Amplifiable ratiometric fluorescence biosensing of nanosilver multiclusters populated in three-way-junction DNA branches. Biosens Bioelectron 2021; 199:113871. [PMID: 34915217 DOI: 10.1016/j.bios.2021.113871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
To explore the fluorescence bio-responsiveness of emissive silver nanoclusters (AgNCs) populated in DNA-branched scaffolds is intriguing yet challenging. In response to a desired targeting model (T*) as a vehicle, herein a customized three-way-junction DNA construct (TWJDC) is assembled via competitive hybridizing cascade among three stem-loop hairpins with specific base sequences, where the repeated recycling of T* enables the exponentially amplifiable output of rigid TWJDC. As designed, these stable hybridization products are highly T*-stimulated responsive and constructing-directional. In the three branched-arms, the unpaired sticky ends provide isotropic binding sites for a signaling hairpin encoded with two C-rich templates of green- and red-AgNCs clustering. The identical ligation of signal probe with three arms of TWJDC liberates its locked stem, enabling the separate growth of red-clusters in three branches. As demonstrated, three clusters of red-AgNCs possess advantageous self-enhancing fluorescent performance relative to single or two cluster(s), good biocompatibility and low cytotoxicity. Utilizing the bicolor AgNCs as dual-emitters with reversely changed emission intensity, we developed an innovative ratiometric strategy displaying sensitively linear dose-dependence on variable T* down to 1.9 pM, which can afford a promising platform for biosensing, bioanalysis, cell imaging, or even clinical theranostics.
Collapse
Affiliation(s)
- Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Huilin Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xin Shang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Siyu Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
20
|
Gao Y, Xu S, Liu Z, Yu K, Pan X. Dual-Emission Fluorescence Probe Based on CdTe Quantum Dots and Rhodamine B for Visual Detection of Mercury and Its Logic Gate Behavior. MICROMACHINES 2021; 12:713. [PMID: 34207022 PMCID: PMC8234752 DOI: 10.3390/mi12060713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023]
Abstract
It is urgent that a convenient and sensitive technique of detecting Hg2+ be developed because of its toxicity. Conventional fluorescence analysis works with a single fluorescence probe, and it often suffers from signal fluctuations which are influenced by external factors. In this research, a novel dual-emission probe assembled through utilizing CdTe quantum dots (QDs) and rhodamine B was designed to detect Hg2+ visually. Only the emission of CdTe QDs was quenched after adding Hg2+ in the dual-emission probe, which caused an intensity ratio change of the two different emission wavelengths and hence facilitated the visual detection of Hg2+. Compared to single emission QDs-based probe, a better linear relationship was shown between the variation of fluorescence intensity and the concentration of Hg2+, and the limit of detection (LOD) was found to be11.4 nM in the range of 0-2.6 μM. Interestingly, the intensity of the probe containing Hg2+ could be recovered in presence of glutathione (GSH) due to the stronger binding affinity of Hg2+ towards GSH than that towards CdTe QDs. Based on this phenomenon, an IMPLICATION logic gate using Hg2+/GSH as inputs and the fluorescence signal of QDs as an output was constructed.
Collapse
Affiliation(s)
- Yuefeng Gao
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Kezhen Yu
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Xinxiang Pan
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
- Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|