1
|
Yang R, Zhao C, Ding S, Ruan J, Li D, Xiang Y, Zhou J, Su H, Li N. Label-free SELEX of aptamers for ultra-sensitive electrochemical aptasensor detection of amanitin in wild mushrooms. Anal Chim Acta 2024; 1326:343136. [PMID: 39260920 DOI: 10.1016/j.aca.2024.343136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Mushroom poisoning poses a significant global health concern, with high morbidity and mortality rates. The primary lethal toxins responsible for this condition are alpha-amanitin (ɑ-AMA) and beta-amanitin (β-AMA). As a promising bio-recognition molecules in biosensors, aptamers, have been broadly used in the field of food detection. However, the current SELEX-based methods for screening aptamers for structurally similar small molecules were limited by the labelling or salt ion induction. In this study, we aimed to develop a novel label-free SELEX strategy for the screening of aptamers with high affinity and constructed new aptasensors for the detection of ɑ-AMA and β-AMA. RESULTS A novel label-free SELEX strategy based on the positively charged gold nanoparticles (AuNPs) was proposed to simultaneous screening of aptamers for ɑ-AMA and β-AMA. Only 18 rounds of SELEX were required to obtain new aptamers. The candidate aptamers were analyzed by colloidal gold assay, and the sequences of ɑ-30 and β-37 displayed great affinity with Kd values of 22.26 nM and 23.32 nM, respectively, without interference from botanical toxins. Notably, the truncated aptamers ɑ-30-2 (50 bp) and β-37-2 (57 bp) exhibited higher affinity than their original counterpart (79 bp). Subsequently, the selected aptamers were utilized to construct recognition probes for electrochemical aptasensors based on hairpin cyclic cleavage of substrates by Cu2+ dependent DNAzyme and Exo I-triggered recycling cascades. The detection platform showed excellent analytical performance with limits of detection as low as 4.57 pg/mL (ɑ-AMA) and 8.49 pg/mL (β-AMA). Moreover, the aptasensors exhibited superior performance in mushroom and urine samples. SIGNIFICANCE This work developed a simple and efficient label-free SELEX method for screening new aptamers for ɑ-AMA and β-AMA, which employed the positively charged AuNPs as the screening medium, without the need for chemical labelling of libraries or induction of salt ions. Furthermore, two novel electrochemical aptasensors were developed based on our newly obtained aptamers, which offer the new biosensing tool for ultrasensitive detection of the AMA poisoning, showing great potential in practical applications.
Collapse
Affiliation(s)
- Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, Sichuan, 610041, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Dongqiu Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yijia Xiang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
2
|
Sun X, Liu M, Liu H, Li L, Ding Y. A molecularly imprinted electrochemical aptasensor-based dual recognition elements for selective detection of dexamethasone. Talanta 2024; 277:126404. [PMID: 38879945 DOI: 10.1016/j.talanta.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
In this work, a novel molecularly imprinted electrochemical aptasensor (MIEAS) was developed for highly selective detection of dexamethasone (Dex) in natural water environment. Gold nanoparticles (AuNPs) modified by nitrogen doped molybdenum carbide-graphene (N-Mo2C-Gr) were employed as the supports, where N-Mo2C-Gr improved the conductivity of the electrode and provided a larger specific surface area to polymerize more active substances. Using Dex as template molecule, o-phenylenediamine (o-PD) as the chemical functional monomer and aptamer as the biofunctional monomer, a molecularly imprinted polymer (MIP) membrane with Dex specific recognition sites was formed by electropolymerization. Due to the synergistic effect of MIP and aptamers, the as-prepared MIEAS exhibited a decent linear relationship to Dex detection within a relatively wide range of 10-13 - 10-5 M, and the detection limit was 1.79 × 10-14 M. The recovery in actual water and tablet samples is satisfactory, which confirms the potential application prospects of this sensor in the determination of Dex.
Collapse
Affiliation(s)
- Xuyuan Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Minmin Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Khan N, Durrani P, Jamila N, Nishan U, Jan MI, Ullah R, Bari A, Choi JY. Hymenaea courbaril resin-mediated gold nanoparticles as catalysts in organic dyes degradation and sensors in pharmaceutical pollutants. Heliyon 2024; 10:e30105. [PMID: 38699715 PMCID: PMC11063429 DOI: 10.1016/j.heliyon.2024.e30105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
In this study, green synthesis of gold nanoparticles (AuNPs) using aqueous extract from Hymenaea courbaril resin (HCR) is reported. The successful formation, functional group involvement, size, and morphology of the subject H. courbaril resin mediated gold nanoparticles (HCRAuNPs) were confirmed by Ultra Violet-Visible (UV-vis) spectroscopy, Fourier-Transform Infrared spectroscopy (FTIR), and Transmission Electron Microscopy (TEM) techniques. Stable and high yield of HCRAuNPs was formed in 1:15 (aqueous solution: salt solution) reacted in sunlight as indicated by the visual colour change and appearance of surface Plasmon resonance (SPR) at 560 nm. From the FT-IR results, the phenolic hydroxyl (-OH) functional group was found to be involved in synthesis and stabilization of nanoparticles. The TEM analysis showed that the particles are highly dispersed and spherical in shape with average size of 17.5 nm. The synthesized HCRAuNPs showed significant degradation potential against organic dyes, including methylene blue (MB, 85 %), methyl orange (MO, 90 %), congo red (CR, 83 %), and para nitrophenol (PNP, 76 %) up to 180 min. The nanoparticles also demonstrated the effective detection of pharmaceutical pollutants, including amoxicillin, levofloxacin, and azithromycin in aqueous environment as observable changes in color and UV-Vis spectral graph.
Collapse
Affiliation(s)
- Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Palwasha Durrani
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ishtiaq Jan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ji Yeon Choi
- Food Analysis Research Center, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| |
Collapse
|
5
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Pundir M, Lobanova L, Papagerakis S, Chen X, Papagerakis P. Colorimetric sensing assay based on aptamer-gold nanoparticles for rapid detection of salivary melatonin to monitor circadian rhythm sleep disorders. Anal Chim Acta 2023; 1279:341777. [PMID: 37827675 DOI: 10.1016/j.aca.2023.341777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Salivary melatonin is a clinically used biomarker for diagnosing circadian rhythm sleep disorders. Current melatonin detection assays are complex, expensive, and in many cases do not adequately measure low levels of salivary melatonin. Precisely measuring melatonin levels at multiple time points is crucial for determining dim light melatonin onset to evaluate its circadian fluctuation as well as the extent of circadian disruption and consequently adapt treatment regimens. Moreover, melatonin low levels in saliva challenges the reliability of routine clinical testing. This paper presents the development of a novel, highly sensitive, yet cost-effective, colorimetric assay for the rapid detection of salivary melatonin utilizing aptamer-AuNPs. Among several types of the aptamer tested, the 36-mer MLT-A-2 aptamer-AuNP probe showed the highest sensitivity with a melatonin limit of detection of 0.0011 nM along with a limit of quantification of 0.0021 nM in saliva. Moreover, our assay showed preferential interaction with melatonin when tested in presence of other structurally similar counter-targets. Taken together, this study provides new parameters for a melatonin assay that meets adequate levels of sensitivity and selectivity. The developed colorimetric assay could be adapted in a point-of-care system for profiling salivary melatonin levels at multiple time points during 24 h, crucial for accurately diagnosing and monitoring circadian rhythm sleep disorders and beyond.
Collapse
Affiliation(s)
- Meenakshi Pundir
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Silvana Papagerakis
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, United States.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Department of Mechanical Engineering, School of Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada.
| | - Petros Papagerakis
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada.
| |
Collapse
|
7
|
Zhang Z, Luan Y, Ru S, Teng H, Li Y, Liu M, Wang J. A novel electrochemical aptasensor for ultrasensitive detection of herbicide prometryn based on its highly specific aptamer and Ag@Au nanoflowers. Talanta 2023; 265:124838. [PMID: 37453395 DOI: 10.1016/j.talanta.2023.124838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Herbicide prometryn has become a common pollutant in aquatic environments and caused adverse impacts on ecosystems. This study developed an ultrasensitive electrochemical aptasensor for prometryn based on its highly affinitive and specific aptamer and Ag@Au nanoflowers (Ag@AuNFs) for signal amplification. Firstly, this study improved the Capture-SELEX strategy to screen aptamers and obtained aptamer P60-1, which had a high affinity (Kd: 23 nM) and could distinguish prometryn from its structural analogues. Moreover, the typical stem-loop structure in aptamer P60-1 was found to be the binding pocket for prometryn. Subsequently, an electrochemical aptasensor for prometryn was established using multiwalled carbon nanotubes and reduced graphene oxide as electrode substrate, Ag@Au NFs as signal amplification element, and aptamer P60-1 as recognition element. The aptasensor had a detection range of 0.16-500 ng/mL and a detection limit of 60 pg/mL, which was much lower than those of existing detection methods. The aptasensor had high stability and good repeatability, and could specifically detecting prometryn. Furthermore, the utility of the aptasensor was validated by measuring prometryn in environmental and biological components. Therefore, this study provides a robust and ultrasensitive aptasensor for accurate detection for prometryn pollution.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
8
|
Zheng X, Yang L, Sun Q, Zhang L, Le T. Development and Validation of Aptasensor Based on MnO 2 for the Detection of Sulfadiazine Residues. BIOSENSORS 2023; 13:613. [PMID: 37366978 DOI: 10.3390/bios13060613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
The monitoring of sulfadiazine (SDZ) is of great significance for food safety, environmental protection, and human health. In this study, a fluorescent aptasensor based on MnO2 and FAM-labeled SDZ aptamer (FAM-SDZ30-1) was developed for the sensitive and selective detection of SDZ in food and environmental samples. MnO2 nanosheets adsorbed rapidly to the aptamer through its electrostatic interaction with the base, providing the basis for an ultrasensitive SDZ detection. Molecular dynamics was used to explain the combination of SMZ1S and SMZ. This fluorescent aptasensor exhibited high sensitivity and selectivity with a limit of detection of 3.25 ng/mL and a linear range of 5-40 ng/mL. The recoveries ranged from 87.19% to 109.26% and the coefficients of variation ranged from 3.13% to 13.14%. In addition, the results of the aptasensor showed an excellent correlation with high-performance liquid chromatography (HPLC). Therefore, this aptasensor based on MnO2 is a potentially useful methodology for highly sensitive and selective detection of SDZ in foods and environments.
Collapse
Affiliation(s)
- Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lulan Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
9
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022; 23:ijms232214475. [PMID: 36430951 PMCID: PMC9695968 DOI: 10.3390/ijms232214475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.
Collapse
Affiliation(s)
- Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- NanoRa Pharmaceuticals Ltd., Tabriz 5166-15731, Iran
| | - Shalen Kumar
- IQ Science Limited, Wellington 5010, New Zealand
| | - Hadi Valizadeh
- Drug Applied Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Somayeh Mahdinloo
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Balam Jimenez
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence:
| |
Collapse
|
12
|
Sen A, Sester C, Poulsen H, Hodgkiss JM. Accounting for Interaction Kinetics between Gold Nanoparticles and Aptamers Enables High-Performance Colorimetric Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32813-32822. [PMID: 35833898 DOI: 10.1021/acsami.2c04747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA aptamers have emerged as promising probes for challenging analytes that cannot be easily detected by conventional probes, including small-molecule targets. Among the different signal transduction approaches, gold nanoparticle (AuNP) aggregation assays have been widely used to generate a colorimetric response from aptamer-target interactions. This sensor design relies on the competition between the aptamer adsorbing to the AuNP surface versus interacting with the target, whereby target binding reduces the number of adsorbed aptamers that destabilizes AuNPs toward salt-induced aggregation, thereby inducing a color change. However, this thermodynamic framework overlooks the potential influence of interaction kinetics of different aptamer conformations with AuNP surfaces and with targets in solution or near surfaces. Here, we show that aptamers become more strongly adsorbed on AuNPs over time, and these trapped aptamers are less responsive toward the target analyte. By varying the sequence of addition in sensing assays, we demonstrate that these interaction kinetics have a significant effect on the sensor response and thereby produce an effective sensor for methamphetamine (meth) at biologically relevant levels in oral fluids. Along with underpinning new tools for assay development, this new knowledge also highlights the need for aptamer selection strategies that evolve aptamer sequences based on the functionality that they need to exhibit in an actual sensor.
Collapse
Affiliation(s)
- Anindita Sen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Clément Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Helen Poulsen
- Forensic Specialised Analytical Services (F-SAS), Institute of Environmental Science and Research (ESR), P.O. Box 50348, Wellington 5240, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| |
Collapse
|
13
|
Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Anal Chim Acta 2022; 1202:339677. [DOI: 10.1016/j.aca.2022.339677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
|
14
|
Xu J, Zhang X, Yan C, Qin P, Yao L, Wang Q, Chen W. Trigging Isothermal Circular Amplification-Based Tuning of Rigorous Fluorescence Quenching into Complete Restoration on a Multivalent Aptamer Probe Enables Ultrasensitive Detection of Salmonella. Anal Chem 2021; 94:1357-1364. [PMID: 34963277 DOI: 10.1021/acs.analchem.1c04638] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of pathogenic bacteria is of vital significance for combating and preventing infectious diseases. In this work, we developed a multivalent aptamer probe (Multi-VAP)-based trigging isothermal circular amplification (TICA) for rapidly and ultrasensitively detecting Salmonella. In this sensing system, the fluorescence of Multi-VAP was strongly quenched via the dual effect of FRET. Introduction of Salmonella to the system forced the configuration change of Multi-VAP, leading to the occurrence of a TICA responsible for tuning all of the fluorescence-quenched Multi-VAP into a complete restoration state. This prominent feature allows the reasonable combination of a strong background restraint and great target signal amplification into one sensing system, which in turn benefits the improvement of the signal-to-noise ratio to ensure that the system has an ultrahigh sensitivity. Combined with the employment of an aptamer to ensure that it has excellent specificity, the Salmonella can be quantitatively and qualitatively analyzed even from human serum. The total processing merely requires sample addition and incubation. The turnaround time of the complete analysis from "sample-to-result" was within 30 min. With the method to decrease the time to detect and simplify the process to operate, the assay was successfully used as a sensing platform for specific detection of as few as 9 CFU/mL Salmonella.
Collapse
Affiliation(s)
- Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
15
|
Kim DM, Go MJ, Lee J, Na D, Yoo SM. Recent Advances in Micro/Nanomaterial-Based Aptamer Selection Strategies. Molecules 2021; 26:5187. [PMID: 34500620 PMCID: PMC8434002 DOI: 10.3390/molecules26175187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are artificial nucleic acid ligands that have been employed in various fundamental studies and applications, such as biological analyses, disease diagnostics, targeted therapeutics, and environmental pollutant detection. This review focuses on the recent advances in aptamer discovery strategies that have been used to detect various chemicals and biomolecules. Recent examples of the strategies discussed here are based on the classification of these micro/nanomaterial-mediated systematic evolution of ligands by exponential enrichment (SELEX) platforms into three categories: bead-mediated, carbon-based nanomaterial-mediated, and other nanoparticle-mediated strategies. In addition to describing the advantages and limitations of the aforementioned strategies, this review discusses potential strategies to develop high-performance aptamers.
Collapse
Affiliation(s)
- Dong-Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Myeong-June Go
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| |
Collapse
|