1
|
Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Titanium carbide MXene/anatase titanium dioxide-supported gold catalysts for the low-temperature oxidation of benzene in indoor air. J Colloid Interface Sci 2025; 695:137770. [PMID: 40339294 DOI: 10.1016/j.jcis.2025.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
In the present study, the oxidative removal of benzene (model carcinogenic aromatic volatile organic compound (VOC)) from indoor air is investigated using titanium carbide (Ti3C2) MXene/anatase titanium dioxide (TiO2)-supported gold (Au) catalysts under dark and low-temperature (DLT: 30-90 °C) conditions. The reduction pre-treatment (catalyst labelled with the 'R' suffix) has been used to form metallic Au (Au0) nanoparticles and anatase TiO2 in the MXene structure. The relative ordering in the Au catalysts, if assessed in terms of room-temperature (RT) benzene (5 ppm) conversion (XB (%)) at 10,191 h-1 gas hourly space velocity, is found as: 0.5 %-Au/Ti3C2-R (85 ± 5.5 %) > 0.2 %-Au/Ti3C2-R (71 ± 1.8 %) ≈ 0.5 %-Au/Ti3C2 (71 ± 2.8 %) > 1 %-Au/Ti3C2-R (52 ± 5.8 %). The catalytic activity peaks at 0.5 wt% Au loading with reduction pre-treatment and is further enhanced by decreasing the flow rate, benzene concentration, and relative humidity (or by increasing the catalyst mass). The 0.5 %-Au/Ti3C2-R catalyst maintains stable benzene mineralization for 24 h time-on-stream (maximum tested reaction time) at RT without noticeable deactivation. Benzene oxidation on the 0.5 %-Au/Ti3C2-R surface proceeds through diverse reaction intermediates (e.g., phenolate, catecholate, o-, p-benzoquinone, formate, and carbonate). The adsorption of benzene and molecular oxygen (O2) occurs near the Au0 sites. Hydrogen first migrates from benzene to O2, forming an -OOH group attached to Au0. Subsequently, hydrogen transfers from benzene to -OOH, leading to the formation of water as the final product. The benzene ring is then unzipped to yield carbon dioxide through various reaction steps. The present work offers insights into developing Au catalysts for practical DLT control of indoor air pollutants.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
2
|
Bina F, Bani F, Khalilzadeh B, Gheit T, Karimi A. Advancements in fluorescent nanobiosensors for HPV detection: from integrating nanomaterials to DNA nanotechnology. Int J Biol Macromol 2025; 311:143619. [PMID: 40306516 DOI: 10.1016/j.ijbiomac.2025.143619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Human papillomavirus (HPV) is a leading cause of cervical cancer and other malignancies, necessitating the development of highly sensitive and specific detection tools. This review explores recent advancements in fluorescent nanobiosensors (FNBS) for HPV detection, focusing on the integration of nanomaterials and DNA nanotechnology, highlighting their contributions to improving sensitivity, specificity, and point-of-care (POC) usability. The review critically evaluates a range of nanomaterial-based FNBS, including those employing quantum and carbon dots, nanoclusters, nanosheets, and nanoparticles, discussing their underlying signal amplification mechanisms, target recognition strategies, and limitations related to toxicity, stability, and reproducibility. Furthermore, it examines the application of diverse DNA nanotechnology, such as DNA origami, DNAzyme, catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and DNA hydrogel in improving FNBS performance. It also addresses the current challenges in clinical translation, emphasizing the necessity for large-scale production methods and thorough clinical validation to ensure biosafety. It also outlines the potential of innovative technologies, such as CRISPR-Cas-based diagnostics and artificial intelligence, to further revolutionize HPV detection and enable accessible, cost-effective screening, particularly in resource-limited settings. This review provides a valuable resource for researchers and clinicians seeking to develop next-generation FNBS for improved HPV diagnostics and cervical cancer prevention.
Collapse
Affiliation(s)
- Fateme Bina
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Tripathy S, Wai NK, Sharma S, Vu NN, Jaitpal S, Zare F, Singh M, McDaid L, Bhattacharyya S, Coté GL, Mabbott SB. A locked aptamer-magnetic nanoparticle assay for cardiac troponin I classification to support myocardial infarction diagnosis in resource-limited environments. Biosens Bioelectron 2025; 286:117590. [PMID: 40408896 DOI: 10.1016/j.bios.2025.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Clinical classification of cardiac troponin I (cTnI) levels is essential for accurately diagnosing acute myocardial infarction. This study introduces an innovative point-of-care test that combines an engineered locked aptamer, magnetic nanoparticle and isothermal, non-enzymatic hybridization chain reaction with surface-enhanced resonance Raman scattering for the sensitive and specific detection of cTnI at clinically significant concentrations. This high sensitivity cTnI assay enabled accurate quantification of cTnI in 25 μL of cTnl doped serum, with a detection limit of 0.403 ng/L and a quantification limit of 1.22 ng/L with a dynamic range spanning from 0.5 ng/L to 50,000 ng/L. Further, optimized to classify cTnI levels beyond the established clinical threshold of 40 ng/L, the assay demonstrates its efficacy by accurately distinguishing between healthy and unhealthy individual clinical samples, achieving over 83 % accuracy and 86 % precision. This approach represents a significant advancement in the point-of-care diagnosis of myocardial infarction, offering a rapid, reliable, and accessible diagnostic tool for cardiac troponin testing.
Collapse
Affiliation(s)
- Sayantan Tripathy
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA; Center for Remote Health Technologies and Systems, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Ng Ka Wai
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Sahil Sharma
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northern Ireland, Londonderry, BT48 7JL, United Kingdom
| | - Ngoc Nhu Vu
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Siddhant Jaitpal
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Muskaan Singh
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northern Ireland, Londonderry, BT48 7JL, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northern Ireland, Londonderry, BT48 7JL, United Kingdom
| | - Saugat Bhattacharyya
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northern Ireland, Londonderry, BT48 7JL, United Kingdom
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA; Center for Remote Health Technologies and Systems, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Samuel B Mabbott
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA; Center for Remote Health Technologies and Systems, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA.
| |
Collapse
|
4
|
Tang Q, Zhang J, Pang J, Huang Y, Guan Y, Gong Y, Tang Q, Zhang K, Liao X. Hybridization chain reaction and CRISPR/Cas12a-integrated biosensor for precise Ago2 detection. Bioelectrochemistry 2025; 165:108975. [PMID: 40156991 DOI: 10.1016/j.bioelechem.2025.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
This study introduces an innovative electrochemiluminescence (ECL) biosensor for the highly sensitive and specific detection of Argonaute 2 (Ago2) activity. Ago2, a key enzyme in the RNA interference (RNAi) pathway, plays a crucial role in gene regulation, and its dysregulation is associated with diseases such as cancer and viral infections. The biosensor integrates hybridization chain reaction (HCR) amplification and the CRISPR/Cas12a system, leveraging a multi-stage signal amplification strategy. The detection mechanism begins with Ago2-mediated cleavage of a designed hairpin RNA (HP-RNA), releasing single-stranded RNA (ssRNA) that triggers HCR. This amplification step generates long DNA polymers, which serve as activators for the CRISPR/Cas12a system. Cas12a's collateral cleavage activity amplifies the signal further by cleaving a DNA reporter labeled with a ruthenium-based luminophore, enhancing the ECL output. This dual amplification strategy achieves exceptional sensitivity, with a detection limit of 0.126 aM. The biosensor demonstrates excellent specificity, distinguishing Ago2 from other Argonaute proteins, and maintains high reproducibility and stability, retaining 94 % of its signal after two weeks of storage. Real-world applicability was confirmed by accurately detecting Ago2 in spiked cell lysates, with recovery rates exceeding 100 %. The combination of HCR, CRISPR/Cas12a, and ECL establishes a robust platform for biomarker detection, offering superior sensitivity and adaptability for clinical diagnostics, disease monitoring, and therapeutic evaluation. This biosensor represents a significant advancement in the development of next-generation diagnostic tools.
Collapse
Affiliation(s)
- Qiang Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiayi Zhang
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jialuo Pang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yingying Huang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Ying Guan
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
5
|
Xia F, Liu F, Yang Y, Liu X, Zhao Y, Yang J, Huang W, Gu J. Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs. ACS Sens 2025; 10:1346-1355. [PMID: 39847658 DOI: 10.1021/acssensors.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with Fe3O4 nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (Fe3O4@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism. Such a unique configuration conceptualized IMIA where the HPZIF-8 shell served as a solid carrier to cover capture antibodies while the Fe3O4 core assisted its rapid separation. The large pore channels not only provided a stable microenvironment to maintain the recognition ability of captured antibodies but also enhanced their coating density, thus promoting the probability of capturing and binding target antigens, significantly improving immunoassay (IA) sensitivity. The practical clinic IA for cTnI (Cardiac Troponin I, biomarker of acute myocardial infarction (AMI)) in human serums was exemplified. The developed IMIA could accurately quantify slight fluctuations in cTnI concentrations in the serums of AMI patients at different stages after symptom onset with more than 100-fold enhancement of limit of detection (LOD) in comparison to conventional plate-based enzyme-linked immunosorbent assay (ELISA). Such high sensitivity of IMIA makes it a powerful tool for the accurate diagnosis of different diseases by altering the type of primary capture antibody.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhong Liu
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Yingjun Yang
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqiang Huang
- Thyroid and Breast Surgery, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Wang M, Sun HN, Liu XY, Liu M, Li SS. A sensitive electrochemical biosensor based on Pd@PdPtCo mesoporous nanopolyhedras as signal amplifiers for assay of cardiac troponin I. Bioelectrochemistry 2025; 161:108838. [PMID: 39442495 DOI: 10.1016/j.bioelechem.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Cardiac troponin I (cTnI) has been widely used in clinical diagnosis of acute myocardial infarction (AMI). Herein, a sensitive electrochemical biosensor for cTnI analysis was designed, in which the simple synthesized Pd@PdPtCo mesoporous nanopolyhedras (MNPs) were utilized as signal amplifiers. The mesoporous polyhedral structure of Pd@PdPtCo MNPs endows them with more specific surface area and more active sites, as well as the synergistic effect between multiple metal elements, all of which increase the electrocatalytic performance of Pd@PdPtCo MNPs in efficiently oxidizing hydroquinone (HQ) to benzoquinone (BQ). Experimental results showed that Pd@PdPtCo MNPs had better performance in oxidation of HQ to BQ compared with their corresponding monometallic and bimetallic nanomaterials. With the aid of the interaction between antigens and antibodies, the peak current of HQ to BQ showed an upward trend with increasing concentration of cTnI, thus the quantitative detection of cTnI could be achieved. Under optimal conditions, the biosensor prepared in this work has a wider linear range (1.0 × 10-4-200 ng mL-1) and a lower detection limit (0.031 pg mL-1) than other sensors reported in literatures, coupled by good stability and high sensitivity. More importantly, it also performed well in complex serum environment, proving that the electrochemical sensor has a practical application potential in this field.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xing-Yu Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
7
|
Suo Z, Zhang L, Zhang Z, Liang R, Shen H, Chen X, Liu Y, Wei M, He B, Jin H. A bifunctional MXene@PtPd NPs cascade DNAzyme-mediated fluorescence/colorimetric dual-mode biosensor for Pb 2+ determination. Food Chem 2025; 464:141845. [PMID: 39504898 DOI: 10.1016/j.foodchem.2024.141845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Pb2+ has numerous sources in cosmetics, industrial pollution and other environments. Therefore, sensitive and accurate detection of Pb2+ content is extremely important in food safety. In this work, bifunctional nanomaterials Ti3C2@PtPd NPs with fluorescence quenching effect and peroxidase activity were prepared by in situ growth of platinum‑palladium nanoparticles (PtPd NPs) on the surface of 2D material Ti3C2. Combining the DNA enzyme recognition element with magnetic separation technology, we constructed a fluorescence/colorimetric dual-channel for the sensitive detection of Pb2+. Under the optimal conditions, the detection ranges of this fluorescence/colorimetric bimodal sensing strategy were 0.1-1000 nmol/L and 0.5-1000 nmol/L, respectively. The LOD of the fluorescence method was 23 pmol/L, and that of the colorimetric method was 74 pmol/L, and the results of the detection were visible to the naked eye. This dual-mode sensing method provides a new platform for accurate, reliable and visualized detection of Pb2+.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Liuyi Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Physical Education Vocational College, Zhengzhou 452470, China
| | - Hailin Shen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213164, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
10
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Jiang L, Li D, Su M, Qiu Y, Chen F, Qin X, Wang L, Gui Y, Zhao J, Guo H, Qin X, Zhang Z. A Label-Free Electrochemical Aptamer Sensor for Sensitive Detection of Cardiac Troponin I Based on AuNPs/PB/PS/GCE. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1579. [PMID: 39404306 PMCID: PMC11477680 DOI: 10.3390/nano14191579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Cardiac troponin I (cTnI) monitoring is of great value in the clinical diagnosis of acute myocardial infarction (AMI). In this paper, a highly sensitive electrochemical aptamer sensor using polystyrene (PS) microspheres as the electrode substrate material in combination with Prussian blue (PB) and gold nanoparticles (AuNPs) was demonstrated for the sensitive and label-free determination of cTnI. PS microspheres were synthesized by emulsion polymerization and then dropped onto the glassy carbon electrode (GCE); PB and AuNPs were electrodeposited on the electrode in corresponding electrolyte solutions step by step. The PS microsphere substrate provided a large surface area for the loading mass of the biological affinity aptamers, while the PB layer improved the electrical conductivity of the modified electrode, and the electroactive AuNPs exhibited excellent catalytic performance for the subsequent electrochemical measurements. In view of the above mentioned AuNPs/PB/PS/GCE sensing platform, the fabricated label-free electrochemical aptamer sensor exhibited a wide detection range of 10 fg/mL~1.0 μg/mL and a low detection limit of 2.03 fg/mL under the optimal conditions. Furthermore, this biosensor provided an effective detection platform for the analysis of cTnI in serum samples. The introduction of this sensitive electrochemical aptamer sensor provides a reference for clinically sensitive detection of cTnI.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (L.J.); (D.L.)
| | - Dongyang Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (L.J.); (D.L.)
| | - Mingxing Su
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Yirong Qiu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Fenghua Chen
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Xiaomei Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Lan Wang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Yanghai Gui
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Jianbo Zhao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Huishi Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (M.S.); (Y.Q.); (F.C.); (X.Q.); (L.W.); (Y.G.); (J.Z.); (H.G.)
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Liu M, Dou S, Vriesekoop F, Geng L, Zhou S, Huang J, Sun J, Sun X, Guo Y. Advances in signal amplification strategies applied in pathogenic bacteria apta-sensing analysis-A review. Anal Chim Acta 2024; 1287:341938. [PMID: 38182333 DOI: 10.1016/j.aca.2023.341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 01/07/2024]
Abstract
Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shouyi Dou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Frank Vriesekoop
- Department of Food, Land and Agribusiness Management, Harper Adams University, Newport, United Kingdom
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shuxian Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
14
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
15
|
Zhang Z, Karimi-Maleh H, Wen Y, Darabi R, Wu T, Alostani P, Ghalkhani M. Nanohybrid of antimonene@Ti 3C 2T x-based electrochemical aptasensor for lead detection. ENVIRONMENTAL RESEARCH 2023; 233:116355. [PMID: 37329944 DOI: 10.1016/j.envres.2023.116355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Lead ions (Pb2+), as one of many common heavy metallic environmental pollutants, can cause serious side-effects and result in chronic poisoning to people's health, so it is highly significant to monitor Pb2+ efficiently and sensitively. Here, we proposed an antimonene@Ti3C2Tx nanohybrid-based electrochemical aptamer sensor (aptasensor) for high sensitive Pb2+ determination. The sensing platform of nanohybrid was synthesized by ultrasonication, possessing the advantages of both antimonene and Ti3C2Tx, which not only can vastly enlarge the sensing signal of the proposed aptasensor, but also greatly simplified its manufacturing flow, because antimonene can strongly interact with aptamer through noncovalently bound. The surface morphology and microarchitecture of the nanohybrid were perused by several methods such as scanning electron microscope (SEM), energy-dispersive X-ray mapping spectroscopy (EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscope (AFM). Under optimal empirical conditions, the proposed aptasensor exhibited a wide linear correlation of the current signals with the logarithm of CPb2+ (Log CPb2+) over the span from 1 × 10-12 to 1 × 10-7 M and provided a trace discernment limit of 3.3 × 10-13 M. Moreover, the constructed aptasensor displayed superior repeatability, great consistency, eminent selectivity, and beneficial reproducibility, implying its extreme potential application for water quality control and the environmental monitoring of Pb2+.
Collapse
Affiliation(s)
- Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China; Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran.
| | - Yangpin Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Tao Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Pardis Alostani
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 16785-163, Tehran, 167881-5811, Iran
| |
Collapse
|
16
|
Non-invasive electrochemical immunosensor for reverse iontophoretic determination of cardiac troponins (cTnT & cTnI) in a simulated artificial skin model. Significance of raw DPV and CV data for chemometric discrimination. Talanta 2023; 256:124276. [PMID: 36731212 DOI: 10.1016/j.talanta.2023.124276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Electrochemical immunosensors coupled with reverse iontophoresis (RI) for noninvasive determination of cardiac troponins were developed and validated according to ICH Q2 (R1) guideline. Linearity was in 0.01-10 and 100-500 ng/mL ranges. LODs (ng/mL) were in 6-25 × 10-4, while LOQs (μg/mL) were in 18-7.5 × 10-4 range. Chemometric evaluation was performed on raw data simply by principle component analysis and cluster analysis to discriminate stages of immunosensors. This is the first demonstration of RI determination of cardiac troponins so far. Findings of the current manuscript have great potential to develop point of care diagnostic systems for major cardiac events, where high sensitivity and specificity are required.
Collapse
|
17
|
Wang Z, Zhang C, He S, Xu D. An ultrasensitive fluorescence aptasensor for SARS-CoV-2 antigen based on hyperbranched rolling circle amplification. Talanta 2023; 255:124221. [PMID: 36608425 PMCID: PMC9792189 DOI: 10.1016/j.talanta.2022.124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and accurate diagnosis of SARS-CoV-2 infection at early stages can help to attenuate the effects of the COVID-19. Compared to RNA and antibodies detection, direct detection of viral antigens could reflect infectivity more appropriately. However, it is still a great challenge to construct a convenient, accurate and sensitive biosensor with a suitable molecular recognition element for SARS-CoV-2 antigens. Herein, we report a HRCA-based aptasensor for simple, ultrasensitive and quantitative detection of SARS-CoV-2 S1 protein and pseudovirus. The aptamer sequence used here is selected from several published aptamers by enzyme-linked oligonucleotide assay and molecular docking simulation. The sensor forms an antibody-target-aptamer sandwich complex on the surface of microplates and elicits HRCA for fluorescent detection. Without complicated operations or special instruments and reagents, the aptasensor can detect S1 protein with a LOD of 89.7 fg/mL in the linear range of 100 fg/mL to 1 μg/mL. And it can also detect SARS-CoV-2 spike pseudovirus in artificial saliva with a LOD of 51 TU/μL. Therefore, this simple and ultrasensitive aptasensor has the potential to detect SARS-CoV-2 infection at early stages. It may improve the timeliness and accuracy of SARS-CoV-2 diagnosis and demonstrate a strategy to conduct aptasensors for other targets.
Collapse
|
18
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS. Advanced growth of 2D MXene for electrochemical sensors. ENVIRONMENTAL RESEARCH 2023; 222:115279. [PMID: 36706895 DOI: 10.1016/j.envres.2023.115279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
19
|
Yu X, Bai S, Wang L. In situ reduction of gold nanoparticles-decorated MXenes-based electrochemical sensing platform for KRAS gene detection. Front Bioeng Biotechnol 2023; 11:1176046. [PMID: 37008032 PMCID: PMC10063977 DOI: 10.3389/fbioe.2023.1176046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
In this work, gold nanoparticles@Ti3C2 MXenes nanocomposites with excellent properties were combined with toehold-mediated DNA strand displacement reaction to construct an electrochemical circulating tumor DNA biosensor. The gold nanoparticles were synthesized in situ on the surface of Ti3C2 MXenes as a reducing and stabilizing agent. The good electrical conductivity of the gold nanoparticles@Ti3C2 MXenes composite and the nucleic acid amplification strategy of enzyme-free toehold-mediated DNA strand displacement reaction can be used to efficiently and specifically detect the non-small cell cancer biomarker circulating tumor DNA KRAS gene. The biosensor has a linear detection range of 10 fM −10 nM and a detection limit of 0.38 fM, and also efficiently distinguishes single base mismatched DNA sequences. The biosensor has been successfully used for the sensitive detection of KRAS gene G12D, which has excellent potential for clinical analysis and provides a new idea for the preparation of novel MXenes-based two-dimensional composites and their application in electrochemical DNA biosensors.
Collapse
|
20
|
Highly Efficient, Remarkable Sensor Activity and energy storage properties of MXenes and Borophene nanomaterials. PROG SOLID STATE CH 2023. [DOI: 10.1016/j.progsolidstchem.2023.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
21
|
Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, Bhansali S, Li CZ, Kaushik A. Towards hospital-on-chip supported by 2D MXenes-based 5 th generation intelligent biosensors. Biosens Bioelectron 2023; 220:114847. [PMID: 36335709 PMCID: PMC9605918 DOI: 10.1016/j.bios.2022.114847] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, 110043, India; SUMAN Laboratory (SUstainable Materials & Advanced Nanotechnology Lab), New Delhi 110072, India.
| | - Virat Khanna
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Hafiz Taimoor Ahmed Awan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Kamaljit Singh
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, Sønderborg, 6400, Denmark
| | - Shekhar Bhansali
- Department of Electrical and Computing Engineering, Florida International University, Miami, FL, 33174, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
22
|
Shen C, Yang B, Huang L, Chen Y, Zhao H, Zhu Z. Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice. BMC Pharmacol Toxicol 2023; 24:1. [PMID: 36627724 PMCID: PMC9832647 DOI: 10.1186/s40360-022-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis.
Collapse
Affiliation(s)
- Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Yueru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
24
|
Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci 2022; 14:51. [PMID: 36316311 PMCID: PMC9622686 DOI: 10.1038/s41368-022-00199-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Collapse
Affiliation(s)
- Yunfeng Lin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- grid.458506.a0000 0004 0497 0637The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
| | - Quanyi Guo
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shuyun Liu
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shihui Zhu
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiang Fan
- grid.13291.380000 0001 0807 1581National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yong Sun
- grid.13291.380000 0001 0807 1581College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Xudong Tian
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Delun Luo
- Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
| | - Sirong Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Guo XM, Zhao ML, Liang WB, Yang X, Yuan R, Zhuo Y. Programmable Y-Shaped Probes with Proximity Bivalent Recognition for Rapid Electrochemiluminescence Response of Acute Myocardial Infarction. ACS Sens 2022; 7:3208-3215. [PMID: 36239972 DOI: 10.1021/acssensors.2c01832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, an exogenous luminophore-free and disposable electrochemiluminescence (ECL) biosensor was established for rapid response of acute myocardial infarction (AMI) using programmable Y-shaped probes (Y-probes) with proximity bivalent recognition. Specifically, the indium tin oxide thin film coated glass electrode (ITO) was modified with urchin-like porous TiO2 microspheres (pTiO2 MSs), which could achieve strong and stable ECL in S2O82- solution due to the dual promoting effect of the coreaction accelerator pTiO2 MSs, exhibiting 2.7-fold higher ECL intensity in comparison with that of bare ITO. Moreover, the Y-probes as bivalent recognition elements containing two kinds of cardiac troponin I (cTnI, a biomarker of AMI) aptamers and a linker labeled with ferrocene (L-Fc) were designed to export a "signal off" mode. When the target cTnI was in the proximity of the Y-probes, the L-Fc was separated from the electrode surface due to the proximity recognition of cTnI and its aptamers, achieving the highly effective recovery of ECL, which allowed for a much more rapid detection of cTnI than the sandwich-type immunoassay. As a proof of concept, an exogenous luminophore-free and disposable ECL platform for rapid and sensitive monitoring of cTnI was obtained and displayed a desired linear range from 100 fg mL-1 to 100 ng mL-1 with a limit of detection (LOD) of 30.1 fg mL-1, which can be ingeniously expanded as a portable home tester with ECL biosensors developments.
Collapse
Affiliation(s)
- Xian-Ming Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
26
|
Lu D, Zhao H, Zhang X, Chen Y, Feng L. New Horizons for MXenes in Biosensing Applications. BIOSENSORS 2022; 12:820. [PMID: 36290957 PMCID: PMC9599192 DOI: 10.3390/bios12100820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
Over the last few decades, biosensors have made significant advances in detecting non-invasive biomarkers of disease-related body fluid substances with high sensitivity, high accuracy, low cost and ease in operation. Among various two-dimensional (2D) materials, MXenes have attracted widespread interest due to their unique surface properties, as well as mechanical, optical, electrical and biocompatible properties, and have been applied in various fields, particularly in the preparation of biosensors, which play a critical role. Here, we systematically introduce the application of MXenes in electrochemical, optical and other bioanalytical methods in recent years. Finally, we summarise and discuss problems in the field of biosensing and possible future directions of MXenes. We hope to provide an outlook on MXenes applications in biosensing and to stimulate broader interests and research in MXenes across different disciplines.
Collapse
Affiliation(s)
- Decheng Lu
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Huijuan Zhao
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Qing Wei Chang College, Shanghai University, Shanghai 200444, China
| | - Xinying Zhang
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yingying Chen
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lingyan Feng
- Department of Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai 200444, China
| |
Collapse
|
27
|
Merkoçi A, Li CZ, Lechuga LM, Ozcan A. Editorial on COVID-19 biosensing technologies- 2d Edition. Biosens Bioelectron 2022; 212:114340. [PMID: 35562254 PMCID: PMC9069983 DOI: 10.1016/j.bios.2022.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain; ICREA, Institució Catalana de Recerca I Estudis Avançats, Barcelona, Spain.
| | - Chen-Zhong Li
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain.
| | - Aydogan Ozcan
- Electrical & Computer Engineering and Bioengineering Departments, University of California, Los Angeles (UCLA), CA, 90095, USA.
| |
Collapse
|
28
|
Sandwich-type electrochemical aptasensor based on Au-modified conductive octahedral carbon architecture and snowflake-like PtCuNi for the sensitive detection of cardiac troponin I. Biosens Bioelectron 2022; 212:114431. [PMID: 35671701 DOI: 10.1016/j.bios.2022.114431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
Abstract
The cardiac troponin I (cTnI) detection is increasingly significant given its promising value in the clinical acute myocardial infarction diagnosis. Here a sensitive sandwich-type cTnI electrochemical aptasensor was developed by using zirconium-carbon loaded with Au (Au/Zr-C) as electrode-modified material and snowflake-like PtCuNi catalyst as label material. The Au/Zr-C was prepared from a carbonation process and a reduction step. The PtCuNi was synthesized by a one-pot hydrothermal reaction. On the one hand, due to its many merits of large effective area, rich pores, high degree of graphitization, the assistance of Au, the Au/Zr-C exhibited remarkable electronic conductivity but low catalytical capacity, thus improving the electrochemical property but lowing the background signal of electrode. On the other hand, because of its accessible active sites of the special snowflake-like structure and the synergy of three elements, the PtCuNi catalyst presented excellent catalytic activity and improved stability compared to binary alloy. The recognition reactions were achieved by stepwise incubation of aptamer 1, cTnI, and aptamer 2-PtCuNi (denoted as Apt2-label) on the Au/Zr-C-modified electrode. The electrocatalytic signals of the immobilized Apt2-label towards the H2O2 reduction were recorded in all tests for cTnI analysis. Consequently, this cTnI aptasensor exhibited excellent performance involving a wide linear range of 100 ng mL-1 to 0.01 pg mL-1 with a detection limit of 1.24 × 10-3 pg mL-1 (S/N = 3), good selectivity, satisfying reproducibility, outstanding stability, and good recovery.
Collapse
|
29
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
30
|
Wang Q, Zhang Z, Zhang L, Liu Y, Xie L, Ge S, Yu J. Photoswitchable CRISPR/Cas12a-Amplified and Co 3O 4@Au Nanoemitter Based Triple-Amplified Diagnostic Electrochemiluminescence Biosensor for Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32960-32969. [PMID: 35839124 DOI: 10.1021/acsami.2c08823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a CRISPR/Cas12a initiated switchable ternary electrochemiluminescence (ECL) biosensor combined with a Co3O4@Au nanoemitter is presented for the in vitro monitoring of miRNA-141. Benefiting from the advantages of high-throughput cargo payload capability and superconductivity, three-dimensional reduced graphene oxide (3D-rGO) was designated as an introductory conducting stratum of a paper working electrode (PWE). With the collaborative participation of Co3O4@Au NPs, the transmutation of TPrA in the Ru(bpy)32+/TPrA system can be riotously expedited into exorbitant free radical ions TPrA•, which provoked the exaggeration of the ECL signal. Moreover, the programmable enzyme-free hybrid chain reaction (HCR) amplifier on the PWE surface accurately anchored the assembly of nucleic acid tandem and accomplished the secondary recursion of the signal. Impressively, the multifunctional CRISPR/Cas12a with nonspecific cis/trans-splitting decomposition manipulated the photoswitch of the "on-off" signal state that avoided the false-positive diagnosis. The presented multistrategy cooperative biosensor demonstrated extraordinary sensitivity and specificity, with a low detection limit of 3.3 fM (S/N = 3) in the concentration scope from 10 fM to 100 nM, which fully corresponded to the expectation. Overall, this innovative methodology paved a generous avenue for evaluating multifarious biotransformations and provided a tremendous impetus to the development of real-time diagnosis and clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Li Xie
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
31
|
Lin X, Li C, Meng X, Yu W, Duan N, Wang Z, Wu S. CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti 3C 2T x MXene as the enhanced quencher. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128750. [PMID: 35364533 DOI: 10.1016/j.jhazmat.2022.128750] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 05/07/2023]
Abstract
Deoxynivalenol (DON) is a typical mycotoxin in cereals and poses tremendous threats to the ecological environment and public health. Therefore, exploiting sensitive and robust analytical methods for DON is particularly important. Here, we fabricated a CRISPR-Cas12a-mediated luminescence resonance energy transfer (LRET) aptasensor to detect DON by using single-stranded DNA modified upconversion nanoparticles (ssDNA-UCNPs) as anti-interference luminescence labels and gold nanoparticle-decorated Ti3C2Tx MXene nanosheets (MXene-Au) as enhanced quenchers. The DON aptamer can activate the trans-cleavage activity of Cas12a to indiscriminately cut nearby ssDNA-UCNPs into small fragments, which prevents ssDNA-UCNPs from adsorbing onto MXene-Au, and the upconversion luminescence (UCL) remains. Upon the binding of the aptamer with DON, the trans-cleavage activity of Cas12a was suppressed, and the ssDNA-UCNPs were not cleaved and easily adsorbed onto MXene-Au, which caused UCL quenching. Under optimized conditions, the limit of detection was determined to be 0.64 ng/mL with a linear range of 1 - 500 ng/mL. In addition, the sensor was successfully applied to detect DON in corn flour and Tai Lake water with recoveries of 96.2 - 105% and 95.2 - 104%, respectively. This platform achieves a sensitive and specific analysis of DON and greatly broadens the detection range of CRISPR-Cas sensors for non-nucleic acids hazards in the environment and food.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangyi Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
32
|
2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FLATCHEM 2022; 33. [PMCID: PMC9055790 DOI: 10.1016/j.flatc.2022.100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has adversely affected the world, causing enormous loss of lives. A greater impact on the economy was also observed worldwide. During the pandemic, the antimicrobial aprons, face masks, sterilizers, sensor processed touch-free sanitizers, and highly effective diagnostic devices having greater sensitivity and selectivity helped to foster the healthcare facilities. Furthermore, the research and development sectors are tackling this emergency with the rapid invention of vaccines and medicines. In this regard, two-dimensional (2D) nanomaterials are greatly explored to combat the extreme severity of the pandemic. Among the nanomaterials, the 2D MXene is a prospective element due to its unique properties like greater surface functionalities, enhanced conductivity, superior hydrophilicity, and excellent photocatalytic and/or photothermal properties. These unique properties of MXene can be utilized to fabricate face masks, PPE kits, face shields, and biomedical instruments like efficient biosensors having greater antiviral activities. MXenes can also cure comorbidities in COVID-19 patients and have high drug loading as well as controlled drug release capacity. Moreover, the remarkable biocompatibility of MXene adds a feather in its cap for diverse biomedical applications. This review briefly explains the different synthesis processes of 2D MXenes, their biocompatibility, cytotoxicity and antiviral features. In addition, this review also discusses the viral cycle of SARS-CoV-2 and its inactivation mechanism using MXene. Finally, various applications of MXene for combatting the COVID-19 pandemic and their future perspectives are discussed.
Collapse
|
33
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
34
|
Liu N, Liu R, Zhang J. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry 2022; 146:108105. [PMID: 35367933 PMCID: PMC8934182 DOI: 10.1016/j.bioelechem.2022.108105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Serological antigen testing has emerged as an important diagnostic paradigm in COVID-19, but often suffers from potential cross-reactivity. To address this limitation, we herein report a label-free electrochemical aptamer-based sensor for the detection of SARS-CoV-2 antigen by integrating aptamer-based specific recognition with CRISPR-Cas12a-mediated signal amplification. The sensing principle is based on the competitive binding of antigen and the preassembled Cas12a-crRNA complex to the antigen-specific aptamer, resulting in a change in the collateral cleavage activity of Cas12a. To further generate an electrochemical signal, a DNA architecture was fabricated by in situ rolling circle amplification on a gold electrode, which serves as a novel substrate for Cas12a. Upon Cas12a-based collateral DNA cleavage, the DNA architecture was degraded, leading to a significant decrease in impedance that can be measured spectroscopically. Using SARS-CoV-2 nucleocapsid antigen as the model, the proposed CRISPR-Cas12a-based electrochemical sensor (CRISPR-E) showed excellent analytical performance for the quantitative detection of nucleocapsid antigen. Since in vitro selection can obtain aptamers selective for many SARS-CoV-2 antigens, the proposed strategy can expand this powerful CRISPR-E system significantly for quantitative monitoring of a wide range of COVID-19 biomarkers.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
35
|
Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron 2022; 205:113943. [PMID: 35219021 DOI: 10.1016/j.bios.2021.113943] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
MXenes are layered two-dimensional (2D) materials discovered in 2011 (Ti3C2X) and are otherwise called 2D transition metal carbides, carbonitrides, and nitrides. These 2D layered materials have been in the limelight for a decade due to their interesting properties such as large surface area, high ion transport, biocompatibility, and low diffusion barrier. Therefore, MXenes are widely preferred by researchers for applications in electronics, sensing, biosensing, electrocatalysis, super-capacitors and fuel cells. There are a number of methods available for the bulk synthesis of MXene-based nanomaterials. In addition, the possibility of structural modification as required and its outstanding surface chemistry offer a fascinating interface for the development of novel biosensors. In this review, we specifically discuss important MXene synthesis routes. Moreover, critical parameters such as surface functionalization that can dictate the mechanical, electronic, magnetic, and optical properties of MXenes are also discussed. Following this, methods available for the surface functionalization and modification strategies of MXenes are also discussed. Furthermore, the emergence of gas, electrochemical, and optical biosensors based on MXenes since its first report is discussed in detail. Finally, future directions of MXenes biosensors for critical applications are discussed.
Collapse
Affiliation(s)
- Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Noel Nesakumar
- Center for Nanotechnology & Advanced Biomaterials CeNTAB, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd, 101S, Fargo, ND, 58102, USA
| | - Tony Y Hu
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Chen-Zhong Li
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
36
|
Li HJ, Zhi S, Zhang S, Guo X, Huang Y, Xu L, Wang X, Wang D, Zhu M, He B. A Novel Photoelectrochemical Sensor Based on SiNWs@PDA for Efficient Detection of Myocardial Infarction. Biomater Sci 2022; 10:4627-4634. [PMID: 35796653 DOI: 10.1039/d2bm00538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the necessity and urgency of Cardiac Troponin I (cTnI) detection for the diagnosis of myocardial infarction, a novel unlabeled photoelectrochemical (PEC) immunosensor was developed to detect cTnI rapidly...
Collapse
Affiliation(s)
- Hui-Jun Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Shibo Zhi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shen Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yueyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ling Xu
- School of Microelectronics, Fudan University, Shanghai 200093, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
37
|
Zhou R, Zeng Z, Sun R, Liu W, Zhu Q, Zhang X, Chen C. Traditional and new applications of the HCR in biosensing and biomedicine. Analyst 2021; 146:7087-7103. [PMID: 34775502 DOI: 10.1039/d1an01371h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hybridization chain reaction is a very popular isothermal nucleic acid amplification technology. A single-stranded DNA initiator triggers an alternate hybridization event between two hairpins forming a double helix polymer. Due to isothermal, enzyme-free and high amplification efficiency characteristics, the HCR is often used as a signal amplification technology for various biosensing and biomedicine fields. However, as an enzyme-free self-assembly reaction, it has some inevitable shortcomings of relatively slow kinetics, low cell internalization efficiency, weak biostability of DNA probes and uncontrollable reaction in these applications. More and more researchers use this reaction system to synthesize new materials. New materials can avoid these problems skillfully by virtue of their inherent biological characteristics, molecular recognition ability, sequence programmability and biocompatibility. Here, we summarized the traditional application of the HCR in biosensing and biomedicine in recent years, and also introduced its new application in the synthesis of new materials for biosensing and biomedicine. Finally, we summarized the development and challenges of the HCR in biosensing and biomedicine in recent years. We hope to give readers some enlightenment and help.
Collapse
Affiliation(s)
- Rong Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, Hunan, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, Hunan, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|