1
|
Lu Q, Yi M, Jiang J. Bioelectronic nose for ultratrace odor detection via brain-computer interface with olfactory bulb electrode arrays. Biosens Bioelectron 2025; 285:117585. [PMID: 40393212 DOI: 10.1016/j.bios.2025.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Rapid and accurate detection of hazardous volatile compounds is crucial for public health and environmental safety. While conventional methods, including electronic noses, typically exhibit detection thresholds in the parts-per-million (ppm) range, many harmful substances pose risks at parts-per-billion (ppb) concentrations or lower. To address this challenge, we leverage the exceptional sensitivity of the mammalian olfactory system, specifically that of Rattus norvegicus (lab rat), which has evolved to detect and discriminate a vast array of odors at extremely low concentrations. In this study, we developed a novel bio-hybrid system that integrates behavioral training with in vivo electrophysiological recordings from the olfactory bulb (OB). Rats were operantly conditioned to recognize target odors, namely TNT (2,4,6-trinitrotoluene), TNP (2,4,6-trinitrophenol), and chlorine gas (Cl2), at ppb levels. Concurrent with behavioral testing, we recorded neural activity from both the dorsal and ventral OB using a customdesigned, multi-channel electrode array optimized for the rat OB's cytoarchitecture. Electrophysiological data were decoded using a Support Vector Machine algorithm, achieving a mean accuracy of over 90 % in classifying odor identity at ppb concentrations based on OB activity patterns. These results demonstrate the feasibility of utilizing a brain-computer interface with the olfactory system to achieve ultratrace detection of hazardous substances. This bio-hybrid approach offers significantly enhanced sensitivity compared to existing electronic nose technologies, paving the way for highly effective environmental and biomedical sensing applications.
Collapse
Affiliation(s)
- Qian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, Shaanxi, PR China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, NO.38, Xueyuan Road, Beijing, 100083, PR China
| | - Junjie Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, Shaanxi, PR China.
| |
Collapse
|
2
|
Sunil A, Pedroncini O, Schaefer AT, Ackels T. How do mammals convert dynamic odor information into neural maps for landscape navigation? PLoS Biol 2024; 22:e3002908. [PMID: 39571004 PMCID: PMC11581409 DOI: 10.1371/journal.pbio.3002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.
Collapse
Affiliation(s)
- Anantu Sunil
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Olivia Pedroncini
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
3
|
Holt L, Johnston SV. From small to tall: breed-varied household pet dogs can be trained to detect Parkinson's Disease. Anim Cogn 2024; 27:62. [PMID: 39352420 PMCID: PMC11445332 DOI: 10.1007/s10071-024-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's Disease (PD) is a clinically diagnosed disease that carries a reported misdiagnosis rate of 10-20%. Recent scientific discoveries have provided evidence of volatile organic compounds in sebum that are unique to patients with PD. The primary objective of this study was to determine if companion dogs could be trained to distinguish between sebum samples provided by PD-positive patients and PD-negative human controls. This was a randomized, handler-blind, controlled study. Twenty-three canines of varying breeds, ages, and environmental backgrounds were included. The study period encompassed 200 total working days from 2021 to 2022. Factors investigated included donor gender and levodopa drug affectivity, as well as canine breed, age, and duration of training time. The findings in this study were compiled from data collected during the final two years of a seven-year research program. For this two-year reporting period, when averaged as a group, the 23 dogs were 89% sensitive and 87% specific to olfactory distinction between PD-positive and PD-negative human donor samples. Ten of the twenty-three dogs averaged 90% or higher in both sensitivity and specificity. In 161 separate trials, a dog was presented with both novel PD-positive and PD-negative samples. For these novel exposures, the dogs collectively averaged 86% sensitivity and 89% specificity. PD medication was also investigated and was found to have no discernible impact on canine sensitivity or specificity results. Study findings support the application of companion dogs, trained with force-free, reward-based methodologies, for the detection of PD-positive and PD-negative samples under controlled conditions.
Collapse
Affiliation(s)
- Lisa Holt
- PADs for Parkinson's, 689 Airport Center Road #425, Friday Harbor, WA, 98250, USA
| | - Samuel V Johnston
- PADs for Parkinson's, 689 Airport Center Road #425, Friday Harbor, WA, 98250, USA.
| |
Collapse
|
4
|
Smith K. The biology of smell is a mystery - AI is helping to solve it. Nature 2024; 633:26-29. [PMID: 39227712 DOI: 10.1038/d41586-024-02833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
5
|
Salamon A, Baranya E, Zsiros LR, Miklósi Á, Csepregi M, Kubinyi E, Andics A, Gácsi M. Success in the Natural Detection Task is influenced by only a few factors generally believed to affect dogs' olfactory performance. Sci Rep 2024; 14:12351. [PMID: 38811746 PMCID: PMC11137087 DOI: 10.1038/s41598-024-62957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Research into dogs' olfactory ability is growing rapidly. However, generalising based on scientific results is challenging, because research has been typically conducted on a few specially trained subjects of a few breeds tested in different environmental conditions. We investigated the effects of temperature and humidity (outdoors), age, test location, sex, neutering status, and repeated testing (outdoors and indoors) on the olfactory performance of untrained family dogs (N = 411) of various breeds. We employed the Natural Detection Task with three difficulty levels, from which we derived two performance metrics: Top Level and Success Score. Temperature (0-25 °C) and humidity (18-90%) did not affect olfactory performance. Young adult dogs surpassed other age groups in reaching the Top Level. Sex and neutering status showed no discernible influence on Top Level and Success Score. Dogs performed better in both metrics when tested indoors compared to outdoors. In the test-retest procedure no significant learning effect was observed. We confirmed on untrained companion dogs that olfactory performance declines with age and rejected some factors that have been previously hypothesised to significantly affect dogs' olfactory success. The influence of the testing environment was notable, emphasising the need to consider various factors in understanding dogs' olfactory capabilities.
Collapse
Affiliation(s)
- Attila Salamon
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest, Hungary.
- ELTE NAP Canine Brain Research Group, Budapest, Hungary.
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Hungarian Ethology Foundation, Göd, Hungary.
| | - Eszter Baranya
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Róbert Zsiros
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Miklósi
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Melitta Csepregi
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Attila Andics
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Neuroethology of Communication Lab, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- Hungarian Ethology Foundation, Göd, Hungary
| |
Collapse
|
6
|
Shcherban IV, Fedotova VS, Matukhno AE, Shepelev IE, Shcherban OG, Lysenko LV. A method for detecting spatiotemporal patterns of cancer biomarkers-evoked activity using radial basis function network extracted time-domain features from calcium imaging data. J Neurosci Methods 2024; 405:110097. [PMID: 38408525 DOI: 10.1016/j.jneumeth.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Two-photon calcium imaging is widely used to study the odor-evoked glomerular activity in the dorsal olfactory bulb of macrosmatic animals. The nonstationary character of activated patterns sets a limit on the use of a traditional image processing approaches. NEW METHOD The developed method makes it possible to automatically map cancer biomarkers-activated glomeruli in the rat dorsal olfactory bulb. We interpolated fluorescence intensity of calcium dynamics based on the Gaussian RBF network and synthesized the physiological fluorescence model of the receptive glomerular field. RESULTS The experiments on 5 rats confirmed the correctness of the developed approach. Patterns evoked by the 6-methyl-5-hepten-2-one (stomach cancer biomarker) and benzene (lung cancer biomarker) were correctly identified. COMPARISON WITH EXISTING METHODS The proposed method was compared with the nonnegative matrix factorization method and with the method based on computer vision algorithms. The developed approach showed better accuracy in experiments and provided the mathematical models of the odor-evoked patterns synthesis. These models can be used to generate synthetic images of odor-evoked glomerular activity and thus to overcome the problem of small experimental data collected in calcium imaging. CONCLUSIONS The proposed method should be considered part of the toolkit for fully automatic analysis of calcium imaging-based studies. Currently available methodology is not able to use breath biomarkers to reliably discriminate between cancer patients and healthy controls. Nevertheless, the effective identification of the spatial patterns of cancer biomarkers-evoked glomerular activity can serve as the foundation for highly sensitive biohybrid systems for cancer screening.
Collapse
Affiliation(s)
- Igor V Shcherban
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation.
| | - Victoria S Fedotova
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation
| | - Aleksey E Matukhno
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation
| | - Igor E Shepelev
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation
| | - Oxana G Shcherban
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation
| | - Larisa V Lysenko
- Southern Federal University (SFedU), Research Center for Neurotechnology, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, the Russian Federation
| |
Collapse
|
7
|
Uguz I, Ohayon D, Yilmaz S, Griggs S, Sheelamanthula R, Fabbri JD, McCulloch I, Inal S, Shepard KL. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. SCIENCE ADVANCES 2024; 10:eadi9710. [PMID: 38517957 PMCID: PMC10959418 DOI: 10.1126/sciadv.adi9710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
The ability to amplify, translate, and process small ionic potential fluctuations of neural processes directly at the recording site is essential to improve the performance of neural implants. Organic front-end analog electronics are ideal for this application, allowing for minimally invasive amplifiers owing to their tissue-like mechanical properties. Here, we demonstrate fully organic complementary circuits by pairing depletion- and enhancement-mode p- and n-type organic electrochemical transistors (OECTs). With precise geometry tuning and a vertical device architecture, we achieve overlapping output characteristics and integrate them into amplifiers with single neuronal dimensions (20 micrometers). Amplifiers with combined p- and n-OECTs result in voltage-to-voltage amplification with a gain of >30 decibels. We also leverage depletion and enhancement-mode p-OECTs with matching characteristics to demonstrate a differential recording capability with high common mode rejection rate (>60 decibels). Integrating OECT-based front-end amplifiers into a flexible shank form factor enables single-neuron recording in the mouse cortex with on-site filtering and amplification.
Collapse
Affiliation(s)
- Ilke Uguz
- Columbia University, New York, NY, USA
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute of Functional Intelligent Materials (IFIM), National University of Singapore, 117544, Singapore
| | | | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, KAUST Solar Center, KAUST, Thuwal 23955-6900, Saudi Arabia
| | | | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
- Physical Science and Engineering Division, KAUST Solar Center, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
8
|
Kopeliovich MV, Petrushan MV, Matukhno AE, Lysenko LV. Towards detection of cancer biomarkers in human exhaled air by transfer-learning-powered analysis of odor-evoked calcium activity in rat olfactory bulb. Heliyon 2024; 10:e20173. [PMID: 38173493 PMCID: PMC10761347 DOI: 10.1016/j.heliyon.2023.e20173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024] Open
Abstract
Detection of volatile organic compounds in exhaled air is a promising approach to non-invasive and scalable gastric cancer screening. This work proposes a new approach for the detection of volatile organic compounds by analyzing odor-evoked calcium responses in the rat olfactory bulb. We estimate the feasibility of gastric cancer biomarker detection added to the exhaled air of healthy participants. Our detector consists of a convolutional encoder and a similarity-based classifier over encoder outputs. To minimize overfitting on a small available training set, we involve a pre-training where the encoder is trained on synthetic data representing spatiotemporal patterns similar to real calcium responses in the olfactory bulb. We estimate the classification accuracy of exhaled air samples by matching their encodings with encodings of calibration samples of two classes: 1) exhaled air and 2) a mixture of exhaled air with the cancer biomarker. On our data, the accuracy increased from 0.68 on real data up to 0.74 if pre-training on synthetic data is involved. Our work is focused on proving the feasibility of proposed new approach rather than on comparing its efficiency with existing methods. Such detection is often performed with an electronic nose, but its output becomes unstable over time due to a sensor drift. In contrast to the electronic nose, rats can robustly detect low concentrations of biomarkers over lifetime. The feasibility of gastric cancer biomarker detection in exhaled air by bio-hybrid system is shown. Pre-training of neural models for images analysis increases the accuracy of detection.
Collapse
Affiliation(s)
| | - Mikhail V. Petrushan
- WiznTech LLC, Rostov-on-Don, 344082, Russia
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Aleksey E. Matukhno
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Larisa V. Lysenko
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
- Department of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
9
|
Uguz I, Ohayon D, Arslan V, Sheelamanthula R, Griggs S, Hama A, Stanton JW, McCulloch I, Inal S, Shepard KL. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat Commun 2024; 15:533. [PMID: 38225257 PMCID: PMC10789794 DOI: 10.1038/s41467-023-44024-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-μm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 μs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-μm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].
Collapse
Affiliation(s)
- Ilke Uguz
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA.
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Volkan Arslan
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | | | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - John William Stanton
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kenneth L Shepard
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| |
Collapse
|