1
|
Chen C, Guo L, Shen Y, Hu J, Gu J, Ji G. Oxidative damage and cardiotoxicity induced by 2-aminobenzothiazole in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135032. [PMID: 38959826 DOI: 10.1016/j.jhazmat.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
There is limited information available on cardiovascular toxicity of 2-Aminobenzothiazole (NTH), a derivative of benzothiazole (BTH) commonly used in tire production, in aquatic organisms. In the present study, the zebrafish embryos were exposed to varying concentrations of NTH (0, 0.05, 0.5, and 5 mg/L) until adulthood and the potential cardiovascular toxicity was assessed. NTH exposure resulted in striking aberrations in cardiac development, including heart looping failure and interference with atrioventricular canal differentiation. RNA-sequencing analysis indicated that NTH causes oxidative damage to the heart via ferroptosis, leading to oxygen supply disruption, cardiac malformation, and ultimately, zebrafish death. Quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated the dysregulation of genes associated with early heart development, contraction, and oxidative stress. Additionally, reactive oxygen species accumulation and glutathione/malondialdehyde levels changes suggested a potential link between cardiac developmental toxicity and oxidative stress. In adult zebrafish, NTH exposure led to ventricular enlargement, decreased heart rate, reduced blood flow, and prolonged RR, QRS, and QTc intervals. To the best of our knowledge, this study is the first to provide evidence of cardiac toxicity and the adverse effects of ontogenetic NTH exposure in zebrafish, revealing the underlying toxic mechanisms connected with oxidative stress damage. These findings may provide crucial insights into the environmental risks associated with NTH and other BTHs.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
2
|
Yang M, Ye Z, Ren Y, Farhat M, Chen PY. Materials, Designs, and Implementations of Wearable Antennas and Circuits for Biomedical Applications: A Review. MICROMACHINES 2023; 15:26. [PMID: 38258145 PMCID: PMC10819388 DOI: 10.3390/mi15010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
The intersection of biomedicine and radio frequency (RF) engineering has fundamentally transformed self-health monitoring by leveraging soft and wearable electronic devices. This paradigm shift presents a critical challenge, requiring these devices and systems to possess exceptional flexibility, biocompatibility, and functionality. To meet these requirements, traditional electronic systems, such as sensors and antennas made from rigid and bulky materials, must be adapted through material science and schematic design. Notably, in recent years, extensive research efforts have focused on this field, and this review article will concentrate on recent advancements. We will explore the traditional/emerging materials for highly flexible and electrically efficient wearable electronics, followed by systematic designs for improved functionality and performance. Additionally, we will briefly overview several remarkable applications of wearable electronics in biomedical sensing. Finally, we provide an outlook on potential future directions in this developing area.
Collapse
Affiliation(s)
- Minye Yang
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA; (Z.Y.); (Y.R.); (P.-Y.C.)
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA; (Z.Y.); (Y.R.); (P.-Y.C.)
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi’an Key Laboratory for Biomedical Testing and High-end Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA; (Z.Y.); (Y.R.); (P.-Y.C.)
| | - Mohamed Farhat
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA; (Z.Y.); (Y.R.); (P.-Y.C.)
| |
Collapse
|
3
|
Zhang J, Nguyen AH, Jilani D, Trigo Torres RS, Schmiess-Heine L, Le T, Xia X, Cao H. Consecutive treatments of methamphetamine promote the development of cardiac pathological symptoms in zebrafish. PLoS One 2023; 18:e0294322. [PMID: 37976248 PMCID: PMC10655962 DOI: 10.1371/journal.pone.0294322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic methamphetamine use, a widespread drug epidemic, has been associated with cardiac morphological and electrical remodeling, leading to the development of numerous cardiovascular diseases. While methamphetamine has been documented to induce arrhythmia, most results originate from clinical trials from users who experienced different durations of methamphetamine abuse, providing no documentation on the use of methamphetamine in standardized settings. Additionally, the underlying molecular mechanism on how methamphetamine affects the cardiovascular system remains elusive. A relationship was sought between cardiotoxicity and arrhythmia with associated methamphetamine abuse in zebrafish to identify and to understand the adverse cardiac symptoms associated with methamphetamine. Zebrafish were first treated with methamphetamine 3 times a week over a 2-week duration. Immediately after treatment, zebrafish underwent electrocardiogram (ECG) measurement using an in-house developed acquisition system for electrophysiological analysis. Subsequent analyses of cAMP expression and Ca2+ regulation in zebrafish cardiomyocytes were conducted. cAMP is vital to development of myocardial fibrosis and arrhythmia, prominent symptoms in the development of cardiovascular diseases. Ca2+ dysregulation is also a factor in inducing arrhythmias. During the first week of treatment, zebrafish that were administered with methamphetamine displayed a decrease in heart rate, which persisted throughout the second week and remained significantly lower than the heart rate of untreated fish. Results also indicate an increased heart rate variability during the early stage of treatment followed by a decrease in the late stage for methamphetamine-treated fish over the duration of the experiment, suggesting a biphasic response to methamphetamine exposure. Methamphetamine-treated fish also exhibited reduced QTc intervals throughout the experiment. Results from the cAMP and Ca2+ assays demonstrate that cAMP was upregulated and Ca2+ was dysregulated in response to methamphetamine treatment. Collagenic assays indicated significant fibrotic response to methamphetamine treatment. These results provide potential insight into the role of methamphetamine in the development of fibrosis and arrhythmia due to downstream effectors of cAMP.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Anh H. Nguyen
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| | - Daniel Jilani
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | | | - Lauren Schmiess-Heine
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Tai Le
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Xing Xia
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Hung Cao
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| |
Collapse
|
4
|
Wei D, Wang L, Poopal RK, Ren Z. IR-based device to acquire real-time online heart ECG signals of fish (Cyprinus carpio) to evaluate the water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122564. [PMID: 37717894 DOI: 10.1016/j.envpol.2023.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Water quality monitoring is a challenging task due to continuous pollution. The rapid development of engineering technologies has paved the way for the development of efficient and convenient computer-based online continuous water-quality assessment techniques. Techniques based on biological-responses are gaining attention, worldwide. Different biosensors have been developed in recent years to monitor real-time biological responses to evaluate water-quality. The survival and function of various organs of the organism depends on the cardiac system. Alterations in the cardiac system could signify the occurrence/initiation of stress in the organism. We developed a real-time online cardiac function assessment system-OCFAS to acquire fish ECG-signals. We obtained P-wave, R-wave, T-wave, PR-intervals, QT-intervals and QRS-complex continuously, which did not affect the normal activities of carp. We exposed Cyprinus carpio to different concentrations (National Environmental Quality Standards) of ammonia for 48 h. Our OCFAS has precisely acquired the required ECG-signals. A real-time dataset reveals sensitivity to ammonia in carp ECG-indexes. Compared with the control group the P-wave, R-wave and T-wave were weaker in ammonia-treated groups. In contrast, the PR-intervals, QT-intervals and QRS-complex were prolonged in the ammonia-treatment groups. The self-organizing map signifies that the PR-intervals, the QRS-complex and the QT-intervals are consistent with environmental stress. Linear regression analysis also quantitatively signifies that the PR interval has the highest R2 value and the lowest SSE-value, followed by the QRS complex and the QT interval. A concentration-related effect was observed in the ammonia treated groups. The integrated biomarker response (IBRv2) index was used to determine the overall stress of ammonia on carp heart ECG-indexes. IBRv2 also supports the real-time response of carp to ammonia stress. Ammonia levels in the aquaculture and water environment require special attention to avoid its adverse effects on the health of aquatic biota. Our study emphasizes the importance of online real-time fish ECG for water-quality assessment.
Collapse
Affiliation(s)
- Danxian Wei
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Lei Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China; Jinan Central Hospital, No. 105, Jiefang Road, Jinan, Shandong, 250013, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
5
|
Cho S, Nam HJ, Shi C, Kim CY, Byun SH, Agno KC, Lee BC, Xiao J, Sim JY, Jeong JW. Wireless, AI-enabled wearable thermal comfort sensor for energy-efficient, human-in-the-loop control of indoor temperature. Biosens Bioelectron 2023; 223:115018. [PMID: 36549111 DOI: 10.1016/j.bios.2022.115018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The conventional heating, ventilation, and air conditioning (HVAC) systems are based on a set-point control approach that only considers the temperature of the environment without reflecting the thermophysiological status of the occupant. This approach not only fails to fully satisfy individual thermal preferences, but it also makes an HVAC operation energy-inefficient. One possible solution is to control the indoor thermal condition based on an accurate prediction of the occupant's thermal comfort to prevent any unnecessary energy consumption. Here, we present an artificial intelligence (AI) wearable sensor-based human-in-the-loop HVAC control system that is operated on a real-time basis reflecting the thermophysiological condition of the occupant to automatically improve their thermal comfort while reducing the energy consumption of the building. The wristband-type, AI-based, three-point wearable temperature sensor offers excellent thermal comfort prediction accuracy (93.9%), enabling a human-centric HVAC control operation. A proof-of-concept demonstration of closed human-in-the-loop HVAC control using the AI-enabled wearable sensor system confirms both the accuracy of the thermal comfort prediction and the energy-efficiency of this approach, demonstrating its potential as a new solution that improves the occupant's thermal comfort and provides building energy savings.
Collapse
Affiliation(s)
- Seonghun Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hong Jae Nam
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Chuanqi Shi
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Karen-Christian Agno
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Joo Yong Sim
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, South Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
6
|
Stracina T, Ronzhina M, Redina R, Novakova M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front Physiol 2022; 13:867033. [PMID: 35547589 PMCID: PMC9082936 DOI: 10.3389/fphys.2022.867033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular system and its functions under both physiological and pathophysiological conditions have been studied for centuries. One of the most important steps in the cardiovascular research was the possibility to record cardiac electrical activity. Since then, numerous modifications and improvements have been introduced; however, an electrocardiogram still represents a golden standard in this field. This paper overviews possibilities of ECG recordings in research and clinical practice, deals with advantages and disadvantages of various approaches, and summarizes possibilities of advanced data analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely expanded in a wide range of clinical applications and offering promising prospects in experimental branches. Since, according to the World Health Organization, cardiovascular diseases are the main cause of death worldwide, studying electrical activity of the heart is still of high importance for both experimental and clinical cardiology.
Collapse
Affiliation(s)
- Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Richard Redina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|