1
|
Aghajanloo B, Nazarnezhad S, Arshadi F, Prakash Kottapalli AG, Pastras C, Asadnia M. Emerging trends in biosensor and microfluidics integration for inner ear theragnostics. Biosens Bioelectron 2025; 286:117588. [PMID: 40408897 DOI: 10.1016/j.bios.2025.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Advancements in inner ear theragnostics are critical for addressing the pervasive challenges of diagnosing and treating hearing and balance disorders, which significantly impact quality of life. This paper reviews biosensors and devices that leverage advanced functional nanomaterials, microfabrication techniques, and nano-biotechnology to enhance theragnostic applications for the inner ear. The paper highlights the development of diverse electromechanical, electrochemical, and biomarker sensors for inner ear theragnostics. Electromechanical sensors replicate the cochlear and vestibular sensory structures through bioinspired designs, while electrochemical sensors are used to measure the level of ions and chemicals in the inner ear fluid, providing insights into the health and disease of the hearing and balance organs. Biomarker sensors focus on screening of inner ear diseases through early detection of correlated biomarkers based on point of care diagnostics. This study also examines the use of microfluidic devices with sensory elements to provide a compact and integrated model of the fluid-filled cochlea. In addition, advanced delivery strategies, including targeted drug delivery systems and nanocarriers are explored for their ability to improve the penetration and distribution of therapeutics within the inner ear. The study also highlights the importance of pharmacokinetics and post-treatment monitoring as critical indicators for assessing the efficacy of micro/nanotechnology-based theragnostic approaches. By consolidating these innovations, this work offers a comprehensive framework for advancing otology, paving the way for novel diagnostic tools, effective treatments, and future clinical applications.
Collapse
Affiliation(s)
| | - Simin Nazarnezhad
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Arshadi
- School of Engineering, Macquarie University, Sydney, Australia
| | - Ajay Giri Prakash Kottapalli
- Department of Bioinspired MEMS and Biomedical Devices (BMBD), Engineering and Technology Institute (ENTEG), University of Groningen, Groningen, Netherlands
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
2
|
Fehrmann M, Beynon AJ, Huinck WJ, Pennings R, Mylanus E, Lanting CP. The potential of electrocochleography in explaining the variability in cochlear implant outcomes: a scoping review. Int J Audiol 2025:1-15. [PMID: 39927716 DOI: 10.1080/14992027.2025.2459223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE This review aimed to catalogue the literature exploring electrocochleography (ECochG) as a potential tool to improve pre-implantation counselling for cochlear implant (CI) recipients. Specifically, it examined the correlation between ECochG responses and speech perception to assess whether these measurements could explain some of the variability in CI outcomes. DESIGN Scoping review. STUDY SAMPLE Sixteen studies were included in this review, 14 of which investigated the correlation between ECochG total response (ECochG-TR) and speech perception outcomes. Additionally, four studies focused on specific components of ECochG-TR in relation to speech perception outcomes. RESULTS Despite several limitations, most studies found that ECochG-TR significantly contributed to the variability in speech perception outcomes, explaining between 16-59% of the variance. The few studies correlating specific ECochG responses, such as cochlear microphonics, summating potential, auditory nerve neurophonics, and compound action potential, with CI outcomes, reported inconsistent results. CONCLUSION This review demonstrated that ECochG-TR can explain a significant portion of the variance in CI outcomes. However, due to the numerous limitations, further research is needed on the correlation between specific ECochG responses and CI outcomes. While ECochG measurements hold value in a research context, they have limited utility in clinical practice for pre-implantation counselling.
Collapse
Affiliation(s)
- Mla Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - A J Beynon
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - W J Huinck
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Rje Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Eam Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - C P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
4
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Macdonald AR, Charlton F, Corrigan DK. Accelerating the development of implantable neurochemical biosensors by using existing clinically applied depth electrodes. Anal Bioanal Chem 2023; 415:1137-1147. [PMID: 36456747 PMCID: PMC9899734 DOI: 10.1007/s00216-022-04445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
In this study, an implantable stereo-electroencephalography (sEEG) depth electrode was functionalised with an enzyme coating for enzyme-based biosensing of glucose and L-glutamate. This was done because personalised medicine could benefit from active real-time neurochemical monitoring on small spatial and temporal scales to further understand and treat neurological disorders. To achieve this, the sEEG depth electrode was characterised using cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) using several electrochemical redox mediators (potassium ferri/ferrocyanide, ruthenium hexamine chloride, and dopamine). To improve performance, the Pt sensors on the sEEG depth electrode were coated with platinum black and a crosslinked gelatin-enzyme film to enable enzymatic biosensing. This characterisation work showed that producing a useable electrode with a good electrochemical response showing the expected behaviour for a platinum electrode was possible. Coating with Pt black improved the sensitivity to H2O2 over unmodified electrodes and approached that of well-defined Pt macro disc electrodes. Measured current showed good dependence on concentration, and the calibration curves report good sensitivity of 29.65 nA/cm2/μM for glucose and 8.05 nA/cm2/μM for L-glutamate with a stable, repeatable, and linear response. These findings demonstrate that existing clinical electrode devices can be adapted for combined electrochemical and electrophysiological measurement in patients and obviate the need to develop new electrodes when existing clinically approved devices and the associated knowledge can be reused. This accelerates the time to use and application of in vivo and wearable biosensing for diagnosis, treatment, and personalised medicine.
Collapse
Affiliation(s)
- Alexander R Macdonald
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Francessca Charlton
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Damion K Corrigan
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK.
| |
Collapse
|
7
|
Abolpour Moshizi S, Pastras CJ, Sharma R, Parvez Mahmud MA, Ryan R, Razmjou A, Asadnia M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens Bioelectron 2022; 214:114521. [PMID: 35820254 DOI: 10.1016/j.bios.2022.114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.
Collapse
Affiliation(s)
| | - Christopher John Pastras
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Rachel Ryan
- College of Public Health, The Ohio State University, Columbus, OH, 43210, United States
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|