1
|
Yang C, Jiang S, Zhao Y, Zhang L, Lyu X, Zhang S, Liang J, He Y, Quan X, Zhang M, Gao R, Song R, Wu J, Gan C, Wu Y, Wang X, Li Y. An ultra-sensitive, intelligent platform for food safety monitoring: Label-free detection of illegal additives using self-assembled SERS substrates and machine learning. Food Chem 2025; 479:143754. [PMID: 40088651 DOI: 10.1016/j.foodchem.2025.143754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
To overcome the limitations of SERS in food safety monitoring, particularly significant interference from citrate ions, this study introduces an intelligent SERS-based platform for food safety monitoring. The platform utilizes sodium borohydride to activate silver nanoparticles, and calcium ions can facilitate the nanoparticles aggregation to promote self-assembly and the form of "hotspots", but will also amplify citrate ions signal. Iodine ions was introduced to eliminate the interference of citrate signals and background fluorescence interference. The substrate achieved limit of detection of 100 fg/mL. Moreover, the innovative of spectral set "SERSome" enables comprehensive molecular fingerprint recognition, significantly enhancing accuracy. Furthermore, combined with machine learning enhances applicability for rapid and precise detection, and classification in food samples, and successfully applied to the monitoring of illegal additives in food. In summary, this system presents an intelligent, innovative detection platform for food safety, contributing to early prevention of foodborne illnesses.
Collapse
Affiliation(s)
- Chunjuan Yang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Jiang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Zhao
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoming Lyu
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shulu Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jiayue Liang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yiyang He
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xubin Quan
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Mingxu Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Ran Gao
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Renxing Song
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu, Finland; Research Center for Innovative Technology of Pharmaceutical Analysis, and College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
2
|
Yin P, Lian X, Wu X, Xiao Y, Feng C, Lv Y, Yi L, Liang M, Ge G, Dmitriy K, Hu B. Raman Peak Features Matching: Enhancing Spectral Analysis through Feature Augmentation. Anal Chem 2025. [PMID: 40230023 DOI: 10.1021/acs.analchem.4c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Raman spectroscopy has emerged as a pivotal technology in modern scientific research and industrial applications, offering nondestructive, high-resolution analysis with robust molecular fingerprinting capabilities. The extraction of Raman spectral features is a critical step in spectral data analysis, directly influencing sample identification, classification, and quantitative outcomes. However, integrating important data features from machine learning models with context-specific biosignatures to derive meaningful insights into spectral analysis remains a significant challenge. Herein, the Raman Peak Feature Matching (RPFM) method is proposed, which matches protein peak features with salient breast cell data features extracted from the machine learning models. Feature augmentation is subsequently applied to the matching-retained breast cell features, thereby enhancing spectral analysis capabilities. The RPFM method is applied to breast cell spectra for feature augmentation with a reclassification accuracy of 97.12% using a linear support vector machine model, achieving an 8.34% improvement over the model's performance without feature augmentation. The RPFM method has also been successfully implemented in generalized linear logistic regression and tree-based eXtreme gradient boosting, demonstrating its versatility across diverse machine learning algorithms. The RPFM method leverages data-driven machine learning models while compensating for the inability to take into account specific specialized background knowledge. This methodology significantly advances the accuracy and efficacy of spectral analysis in biological and medical applications, offering a novel framework for machine learning algorithms to perform augmented Raman spectral analysis.
Collapse
Affiliation(s)
- Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Xichao Lian
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Xiaoyao Wu
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Yumeng Xiao
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Chenyao Feng
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Yuxuan Lv
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Langlang Yi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Minghui Liang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanqun Ge
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Klyuyev Dmitriy
- Institute of Life Sciences, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Bo Hu
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Xi'an Intelligent Precision Diagnosis and Treatment International Science and Technology Cooperation Base, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
3
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
4
|
Wang Y, Li C, Yang Y, Ma C, Zhao X, Li J, Wei L, Li Y. A Surface-Enhanced Raman Spectroscopy Platform Integrating Dual Signal Enhancement and Machine Learning for Rapid Detection of Veterinary Drug Residues in Meat Products. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16202-16212. [PMID: 40025671 DOI: 10.1021/acsami.4c21938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The detection and quantification of veterinary drug residues in meat remain a significant challenge due to the complex background interference inherent to the meat matrix, which compromises the stability and accuracy of spectroscopic analysis. This study introduces an advanced label-free surface-enhanced Raman spectroscopy (SERS) platform for the precise identification and quantification of veterinary drugs. By employing a dual enhancement strategy involving sodium borohydride activation and calcium ion-deuterium oxide guidance, this platform achieves the efficient capture and signal amplification of drug molecules on highly active nanoparticles. High-quality SERS spectra were obtained for carprofen, doxycycline hydrochloride, chloramphenicol, and penicillin G sodium salt, enabling accurate classification and interference suppression. In addition, the application of machine learning algorithms, including PCA-LDA, heatmap, and decision tree modeling, allows for accurate differentiation of mixed drug samples. Quantitative analyses in meat samples were achieved through Raman intensity ratios and multivariate curve resolution-alternate least-squares (MCR-ALS) analysis, with results showing high consistency with high-performance liquid chromatography (HPLC) measurements. These findings highlight the potential of this SERS-based platform for accurate and rapid detection of multicomponent veterinary drug residues in complex food matrices.
Collapse
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Chengming Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Yang Yang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Chaochao Ma
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Xiaojiao Zhao
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Jiacheng Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Lin Wei
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Har-bin City, Heilongjiang Province 150081, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu, 90014, Finland
| |
Collapse
|
5
|
Chen K, Zhao Q, Wei Y, Sun J, Lu Y, Xiao T, Zhang H, Cai W. Design and Engineering of Silver Nanomushroom Arrays as a Universal Solid-State SERS Platform for the Label-Free, Sensitive, and Quantitative Detection of Trace Proteins. ACS APPLIED BIO MATERIALS 2025; 8:1484-1492. [PMID: 39889147 DOI: 10.1021/acsabm.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrasensitive optical technique that is critical for protein detection and essential for identifying protein structure and concentrations in various biomedical and diagnostic applications. However, achieving highly sensitive and reproducible SERS signals for label-free proteins remains challenging due to their weak Raman signals and structural complexity. In this study, silver nanomushroom arrays (Ag NMAs) as SERS substrates were readily prepared and surface-engineered using a facile template-assisted micro- and nanofabrication approach. The surface of the substrate exhibits nanoscale roughness, long-range order, and hydrophilicity, enabling rapid and uniform dispersion of protein molecules. These molecules are anchored through Ag-S bonds, resulting in ultrasensitive Raman signals driven by strong electromagnetic enhancement effects. The highly ordered array structure improves signal repeatability, achieving a relative standard deviation of as low as 4.32%. Additionally, utilizing the silicon characteristic peak of the SERS substrate as an internal standard significantly reduces measurement errors, allowing for reliable and precise quantitative detection of protein molecules, with a linear correlation coefficient (R2) exceeding 0.96. Ultrasensitive SERS detection and effective protein discrimination via principal component analysis further validate the Ag NMA substrate's potential for universal trace protein detection. This study presents an advanced SERS platform for the sensitive and rapid detection of trace proteins, showcasing significant potential in pharmaceutical research, metabolic studies, diagnostic medicine, and protein engineering.
Collapse
Affiliation(s)
- Kang Chen
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qian Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yi Wei
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832003, P. R. China
| | - Yanyan Lu
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tingting Xiao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Key Laboratory of Toxic and Harmful Gas Monitoring and Early Warning, Ministry of Emergency Management, Baoding 065201, P. R. China
| | - Weiping Cai
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
6
|
Wu J, Zhang Y, Wang J, Ling Z, Yan X, Lyu X, Fang J, Cheng M, Zhao M, Ban T, Liu Y, Li Y. Advancing Protein Detection and Analysis Based on Ag/Au PHCN for Enhanced SERS Sensitivity and Specificity in Biomolecular Diagnostics. Anal Chem 2024; 96:15735-15745. [PMID: 39284018 DOI: 10.1021/acs.analchem.4c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
In the realm of disease diagnostics, particularly for conditions such as proteinuria and hemoglobinuria, the quest for a method that combines accurate, label-free detection of protein compositions and their conformational changes remains a formidable challenge. In this study, we introduce an innovative Ag/Au plasmonic hybrid coupling nanoarray (Ag/Au PHCN) architecture marked by sub-10 nm interparticle gaps. These nanoarrays, leveraging plasmonic hybrid coupling and synergistic enhancement mechanisms, create a plethora of uniform surface-enhanced Raman spectroscopy (SERS) hotspots. The Ag/Au PHCN substrates demonstrated unparalleled sensitivity in the unmarked detection of hemoglobin (HGB), bovine serum albumin (BSA), and cytochrome C (Cyt.C) in bodily fluids, incorporating the advantages of high sensitivity, high reproducibility, durability, recyclability, and biocompatibility. Notably, the detection limits for BSA and HGB are unprecedented at 0.5 and 5 ng/mL, respectively. This achievement sets a new benchmark for label-free protein detection using two-dimensional nanostructures. Crucially, the Ag/Au PHCNs possess the novel capability to discern protein conformational changes post denaturation, underscoring their potential in probing protein functionalities. Most importantly, these nanoarrays can differentiate between normal and proteinuria-affected urine samples and monitor protein content variations over time, heralding a new era in clinical diagnostics with particular relevance to proteinuria and hemoglobinuria detection.
Collapse
Affiliation(s)
- Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Ying Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jiuchuan Wang
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Zhuangzhuang Ling
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xuanhua Yan
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jinghuai Fang
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Mingfei Cheng
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Min Zhao
- School of Artificial Intelligence and Computer Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Tao Ban
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, P. R. China
| | - Yang Li
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, FI-90014 Oulu, Finland
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, P. R. China
| |
Collapse
|
7
|
Gobbato R, Fornasaro S, Sergo V, Bonifacio A. Direct comparison of different protocols to obtain surface enhanced Raman spectra of human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124390. [PMID: 38749203 DOI: 10.1016/j.saa.2024.124390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Label-free Surface Enhanced Raman Spectroscopy (SERS) is a rapid technique that has been extensively applied in clinical diagnosis and biomedicine for the analysis of biofluids. The purpose of this approach relies on the ability to detect specific "metabolic fingerprints" of complex biological samples, but the full potential of this technique in diagnostics is yet to be exploited, mainly because of the lack of common analytical protocols for sample preparation and analysis. Variation of experimental parameters, such as substrate type, laser wavelength and sample processing can greatly influence spectral patterns, making results from different research groups difficult to compare. This study aims at making a step toward a standardization of the protocols in the analysis of human serum samples with Ag nanoparticles, by directly comparing the SERS spectra obtained from five different methods in which parameters like laser power, nanoparticle concentration, incubation/deproteinization steps and type of substrate used vary. Two protocols are the most used in the literature, and the other three are "in-house" protocols proposed by our group; all of them are employed to analyze the same human serum sample. The experimental results show that all protocols yield spectra that share the same overall spectral pattern, conveying the same biochemical information, but they significantly differ in terms of overall spectral intensity, repeatability, and preparation steps of the sample. A Principal Component Analysis (PCA) was performed revealing that protocol 3 and protocol 1 have the least variability in the dataset, while protocol 2 and 4 are the least repeatable.
Collapse
Affiliation(s)
- Roberto Gobbato
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, Via Valerio 6a, 34127 Trieste, TS, Italy.
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, TS, Italy.
| | - Valter Sergo
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, Via Valerio 6a, 34127 Trieste, TS, Italy.
| | - Alois Bonifacio
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, Via Valerio 6a, 34127 Trieste, TS, Italy.
| |
Collapse
|
8
|
Jiang S, Li Q, Wu G, Mu X, Wang X, Wang Y, Wu Y, Wu J, Li Y. Advances in Label-Free Glucose Detection Using Self-Assembled Nanoparticles and Surface-Enhanced Raman Spectroscopy. Anal Chem 2024; 96:11533-11541. [PMID: 38973171 DOI: 10.1021/acs.analchem.4c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.
Collapse
Affiliation(s)
- Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Qiuyun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xuming Mu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
9
|
Dong L, Zhang Y, Fu B, Swart C, Jiang H, Liu Y, Huggett J, Wielgosz R, Niu C, Li Q, Zhang Y, Park SR, Sui Z, Yu L, Liu Y, Xie Q, Zhang H, Yang Y, Dai X, Shi L, Yin Y, Fang X. Reliable biological and multi-omics research through biometrology. Anal Bioanal Chem 2024; 416:3645-3663. [PMID: 38507042 DOI: 10.1007/s00216-024-05239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Yu Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Boqiang Fu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Claudia Swart
- Physikalisch-Technische Bundesanstalt, 38116, Braunschweig, Germany
| | | | - Yahui Liu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Jim Huggett
- National Measurement Laboratory at LGC (NML), Teddington, Middlesex, UK
| | - Robert Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - Chunyan Niu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Qianyi Li
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yongzhuo Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Sang-Ryoul Park
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Zhiwei Sui
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Lianchao Yu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | | | - Qing Xie
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfu Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xinhua Dai
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ye Yin
- BGI, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiang Fang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
10
|
Ma Y, Ma R, Zhang Z, Jiang H, Li Y, Jiang S, Li Y. Surface-Enhanced Raman Spectroscopy-Based Detection of EMT-Related Targets in Endometrial Cancer: Potential for Diagnosis and Prognostic Prediction. Anal Chem 2024; 96:8973-8980. [PMID: 38780221 DOI: 10.1021/acs.analchem.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Epithelial-mesenchymal transformation (EMT) is one of the important mechanisms of malignancy in endometrial cancer, and detection of EMT targets is a key challenge to explore the mechanism of endometrial carcinoma (EC) malignancy and discover novel therapeutic targets. This study attempts to use surface-enhanced Raman spectroscopy (SERS), a highly sensitive, ultrafast, and highly specific analytical technology, to rapidly detect microRNA-200a-3p and ZEB1 in endometrial cancer cell lines. The silver nanoparticles were decorated with iodine and calcium ions, can capture the SERS fingerprints of microRNA-200a-3p and ZEB1 protein, and effectively avoid the interference of impurity signals. At the same time, the method has high sensitivity for the detection of the above EMT targets, and the lowest detection limits for microRNA-200a-3p and ZEB1 are 4.5 pmol/mL and 10 ng/mL, respectively. At the lowest detection concentration, the method still has high stability. In addition, principal component analysis can not only identify microRNA-200a-3p and ZEB1 protein from a variety of EMT-associated microRNA and proteins but also identify them in the total RNA and total protein of endometrial cancer cell lines and normal endometrial epithelial cell lines. This study modified silver nanoparticles with iodine and calcium ions and for the first time captured the fingerprints of EMT-related targets microRNA-200a-3p and ZEB1 at the same time without label, and the method has high sensitivity and stability. This SERS-based method has immense potential for elucidating the molecular mechanisms of EMT-related EC, as well as identifying biomarkers for malignant degree and prognosis prediction.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, Heilongjiang 150081, China
| | - Ruiyao Ma
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
| | - Zhe Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
| | - Heng Jiang
- College of Public Health, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
| | - Yuting Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
| | - Shen Jiang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90014, Finland
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang 150081, China
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
11
|
Xu Y, Wu Y, Wei J, Zhao Y, Xue P. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2888-2896. [PMID: 38646710 DOI: 10.1039/d4ay00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intensity and sensitivity of surface-enhanced Raman scattering (SERS) spectra are highly dependent on the consistency and homogeneity of the nanomaterials. In this study, we developed a large-area three-dimensional (3D) hotspot substrate with good homogeneity and reproducibility in SERS signals. The substrate is based on the synergistic structures of nanoporous gold (NPG) and gold nanoparticles (AuNPs). NPG was combined with a periodic V-shaped nanocavity array to create nanoporous gold with a V-cavity (NPGVC) array featuring uniform hotspots. A nanoporous gold V-shaped resonant cavity (NPGVRC) structure was developed by incorporating AuNPs into the NPGVC array. The coupling action between the AuNPs and NPGVC resulted in a SERS-enhanced electromagnetic field with 3D hotspot distribution. The strategic incorporation of NPG and V-cavity array significantly expanded the surface area available for analyte adsorption and interaction with AuNPs. Using rhodamine 6G (R6G) and malachite green (MG) as probe molecules, the SERS performance was investigated, and the NPGVRC substrate not only showed excellent enhancement with the limit of detection as low as 10-11 M, but also presented good homogeneity. NPGVRC was then used for biological detection of the influenza A virus, where we acquired and examined the characteristic SERS spectra of two spike proteins. It is demonstrated that there is significant potential for our proposed SERS platform to be used in biosensors.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Wu
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Jianjun Wei
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yuanyu Zhao
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Peili Xue
- Sichuan Science City Hospital, Mianyang 621000, China
| |
Collapse
|
12
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
13
|
Yang C, Zhao Y, Jiang S, Sun X, Wang X, Wang Z, Wu Y, Wu J, Li Y. A breakthrough in phytochemical profiling: ultra-sensitive surface-enhanced Raman spectroscopy platform for detecting bioactive components in medicinal and edible plants. Mikrochim Acta 2024; 191:286. [PMID: 38652378 DOI: 10.1007/s00604-024-06360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.
Collapse
Affiliation(s)
- Chunjuan Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yue Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuang Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medical (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu, Finland.
| |
Collapse
|
14
|
Jiang J, Fang Z, Kan X. ZIF-8 encapsulated-enzymes integrated nanozyme cascade biocatalysis platform for the colorimetric sensing of glucose and lactose in milk. Food Chem 2024; 438:138025. [PMID: 37983992 DOI: 10.1016/j.foodchem.2023.138025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cascade biocatalytic reactions have a wide range of applications, especially in the filed of food analysis. Herein, a multi-enzyme composite (ZGGPC) was prepared by in-situ synthesis of Zeolite imidazole framework-8 (ZIF-8) on Prussian blue (PB) modified carbon cloth (CC). The composite encapsulated both glucose oxidase and β-galactosidase simultaneously during the synthesis process. CC and ZIF-8 showed high loading capacity for PB and natural enzymes, respectively. And ZIF-8 also displayed excellent tolerance in protecting enzyme activity under extreme conditions. Based on the cascade biocatalysis, ZGGPC was used to detect glucose and lactose by colorimetric method with detection limits of 1.2 μM and 1.7 mM, respectively. Benefiting from the merits of low cost, easy preparation, and good stability, the sensing system was used to successfully determine glucose and lactose in different milk samples. The present cascade biocatalysis system is hopeful to develop simple and efficient sensing platforms for food analysis.
Collapse
Affiliation(s)
- Jing Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Ziyue Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Xianwen Kan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
15
|
Wang Y, Xu X, Li Y, Li C, Wang X, Wu J, Li Y. Handcrafted silver substrates boost surface plasmon resonance for ultra-sensitive lipid analysis. Talanta 2024; 269:125432. [PMID: 38039677 DOI: 10.1016/j.talanta.2023.125432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Lipid monitoring plays a crucial role in biomedical research, particularly in the areas of cardiovascular health, metabolic disorders and nutrition. However, direct and highly sensitive detection of lipids poses significant challenges due to the interference of high SERS background noise in lipid samples. In this study, we present a SERS platform for the quantitative analysis of lipids. By harnessing the Surface Plasmon Resonance (SPR) effect of nanostructured grooves and leveraging deuterium oxide, a remarkable enhancement of in-situ Raman signals originating from cholesterol is achieved. This approach yielded an impressive average enhancement factor of 7.3 × 105 and a detection limit of 1.9 × 10-4 mg/mL, highlighting the exceptional sensitivity and precision of our method. We have obtained high quality, in-situ SERS signals for six distinct lipid molecules. Rapid identification of lipid samples in mixed systems has been achieved through the combination of characteristic peak analysis and PCA-LDA, including the detection of SERS signals from lipids in milk. Notably, univariate monitoring of in-situ cholesterol in human serum was successfully achieved for the first time using deuterium water as an internal standard. In addition, silver substrate demonstrated outstanding reproducibility, maintaining consistent SERS activity even after more than 10 repetitions. Therefore, this platform offers the distinct advantages of high sensitivity, specificity and cost-effectiveness for lipid detection. These findings enable dietary management and blood lipid monitoring, and therefore hold crucial implications for the early prevention of lipid-related disorders and diseases.
Collapse
Affiliation(s)
- Yunpeng Wang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoying Xu
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China
| | - Yuting Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China
| | - Chengming Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China
| | - Xiaotong Wang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jing Wu
- School of Science, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yang Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Aapistie 5A, 90220, Oulu, Finland; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
16
|
Zhang Y, Lyu X, Chen D, Wu J, Li D, Li Y. DNA induced CTAB-caped gold bipyramidal nanoparticles self-assembly using for Raman detection of DNA molecules. Talanta 2024; 266:124936. [PMID: 37478765 DOI: 10.1016/j.talanta.2023.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
DNA is an indispensable part of metabolism, which affects many important processes in the body, including gene expression, protein synthesis, and drug delivery. Surface-enhanced Raman spectroscopy (SERS) is one of the most important methods used to study the structure and function of DNA and can obtain rich DNA molecular fingerprints. However, it is still a great challenge to use SERS to directly analyze the characteristic Raman signals of the DNA molecule and achieve rapid and simple detection. Hence, a detection platform based on gold bipyramidal nanoparticles (AuNBs) self-assembly that can be directly used for the detection of DNA molecules without the need for additional aggregators and cleaning agents was designed in this study. The original hexadecyltrimethylammonium bromide (CTAB) of AuNBs can be used as the internal standard for DNA quantification without an additional standard. This is the first time that the Raman signals of the analyte molecule can be obtained directly without labels by using the interaction between the molecule and the enhanced substrate. We used this method to capture the original DNA molecules in methylated DNA, serum, and cell metabolites and obtained spectral data processing results using linear discriminant analysis (LDA). This provides new ideas for the digitization of disease treatment and the study of the metabolic processes of life.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoming Lyu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China
| | - Dongsu Chen
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Dawei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220, Oulu, Finland; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
17
|
Zhou Y, Wang H, Zhao Z, Luan D, Bian X, Lai K, Yan J. Colloidal SERS measurement of enrofloxacin with petaloid nanostructure clusters formed by terminal deoxynucleotidyl transferase catalyzed cytosine-constituted ssDNA. Food Chem 2023; 429:136954. [PMID: 37499513 DOI: 10.1016/j.foodchem.2023.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
We developed petal-like plasmonic nanoparticle (PLNP) clusters-based colloidal SERS method for enrofloxacin (EnFX) detection. PLNPs were synthesized by the regulation of single-stranded DNA composed of homo-cytosine deoxynucleotides (hC) catalyzed by terminal deoxynucleotidyl transferase. SERS hot spots were created via the agglomeration process of PLNPs by adding an inorganic salt potassium iodide solution, in which EnFX molecules were attached to the negatively charged PLNPs surface by electrostatic interactions. This approach enabled direct in situ detection of antibiotic residues, achieving a limit of detection (LOD) of 1.15 μg/kg for EnFX. The spiked recoveries of the SERS method were approximately 92.7% to 107.2% and the RSDs ranged from 1.05% to 7.8%, indicating that the method can be applied to actual sample detection. This colloidal SERS measurement platform would be very promising in various applications, especially in real-time and on-site food safety screening owing to its rapidness, simplicity, and sensitivity.
Collapse
Affiliation(s)
- Yangyang Zhou
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Huiyuan Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhihui Zhao
- Shanghai Oceanhood Optoelctronics Technology Co., Shanghai 200444, PR China
| | - Donglei Luan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Keqiang Lai
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
18
|
Zeng J, Zhang Y, Huang C, Li L, Zhu B, Chen D. Detection of simple proteins by direct surface-enhanced Raman scattering based on the Hofmeister ion-specific effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122235. [PMID: 36535223 DOI: 10.1016/j.saa.2022.122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has unique advantages in detecting biomolecules, but label-free determination of proteins with low scattering cross-sections remains challenging. In this study, such proteins' SERS signals have been optimized using the Hofmeister effect between protein molecules and CsI solution at physiological concentrations (A 100 mmol/L Cesium iodide, CsI). Cs+ as chaotro cation ion has a complex interaction mechanism with protein, can not only deprive hydrated water molecules on the surface of protein but also penetrate into the hydrophobic interior of protein. In addition to the above advantages, I- in excess CsI solution with appropriate concentration can removes the interference of citric acid-based impurities on the surface of silver nanoparticles, and Cs+ in excess CsI solution attracts the aggregation of negatively charged silver nanoparticles and cause local electromagnetic field enhancement to achieve high sensitivity in protein detection. This has been combined with principal component analysis to perform a comprehensive analysis of several proteins. Molecular dynamics simulations have been performed to study the mechanism of interaction between CsI and proteins. In addition, the vibrational peak of water has been used as an internal standard to quantify the protein content, and a good linear relationship between peak intensity and concentration was obtained.
Collapse
Affiliation(s)
- Jiayu Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Yufeng Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Chao Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Longjiang Li
- Mining College of Guizhou University, Guiyang 550025, China
| | - Bixue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Dongmei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
19
|
Liu L, Zhang T, Wu Z, Zhang F, Wang Y, Wang X, Zhang Z, Li C, Lv X, Chen D, Jiao S, Wu J, Li Y. Universal Method for Label-Free Detection of Pathogens and Biomolecules by Surface-Enhanced Raman Spectroscopy Based on Gold Nanoparticles. Anal Chem 2023; 95:4050-4058. [PMID: 36780544 DOI: 10.1021/acs.analchem.2c04525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The detection of biomolecules is the key to basic molecular research, diagnostics, drug screening, and other biomedical applications. However, the existing detection techniques can only detect single classes of biomolecules, which warrant the development of a versatile biomolecule detection platform. Here, we developed a universal method for label-free detection of biomolecules via surface-enhanced Raman spectroscopy (SERS) by using sulfhydryl-modified gold nanoparticles as the substrate. The biomolecules can be adsorbed on the surface of gold nanoparticles cleaned by bromide ions to obtain initially enhanced Raman signals, and the aggregator (calcium ion) was further added to form a "hot spot", which enhanced the biomolecular signal again. Through the "two-step enhancement method", we were able to obtain fingerprints of DNA, RNA, amino acids, peptides, proteins, viruses, bacteria, and lipid molecules. This low-toxic, highly sensitive, and widely applicable technique has potential applications in biomedical research, clinical testing, and disease diagnosis and lays the foundation for the development of SERS technology in various fields.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Zheng Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Fenghai Zhang
- Institute of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, P.R. China
| | - Yunpeng Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Zhe Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Chengming Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xinpeng Lv
- Department of Emergency Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Deqiang Chen
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Songyan Jiao
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| |
Collapse
|
20
|
Raj D, Barrera G, Scaglione F, Celegato F, Cialone M, Coïsson M, Tiberto P, Sort J, Rizzi P, Pellicer E. Electrochemical Synthesis, Magnetic and Optical Characterisation of FePd Dense and Mesoporous Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:403. [PMID: 36770364 PMCID: PMC9920478 DOI: 10.3390/nano13030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Dense and mesoporous FePd nanowires (NWs) with 45 to 60 at.% Pd content were successfully fabricated by template- and micelle-assisted pulsed potentiostatic electrodeposition using nanoporous anodic alumina and polycarbonate templates of varying pore sizes. An FePd electrolyte was utilized for obtaining dense NWs while a block copolymer, P-123, was added to this electrolyte as the micelle-forming surfactant to produce mesoporous NWs. The structural and magnetic properties of the NWs were investigated by electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The as-prepared NWs were single phase with a face-centered cubic structure exhibiting 3.1 µm to 7.1 µm of length. Mesoporous NWs revealed a core-shell structure where the porosity was only witnessed in the internal volume of the NW while the outer surface remained non-porous. Magnetic measurements revealed that the samples displayed a soft ferromagnetic behavior that depended on the shape anisotropy and the interwire dipolar interactions. The mesoporous core and dense shell structure of the NWs were seen to be slightly affecting the magnetic properties. Moreover, mesoporous NWs performed excellently as SERS substrates for the detection of 4,4'-bipyridine, showing a low detection limit of 10-12 M. The signal enhancement can be attributed to the mesoporous morphology as well as the close proximity of the embedded NWs being conducive to localized surface plasmon resonance.
Collapse
Affiliation(s)
- Deepti Raj
- Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Interfaces and Surfaces), Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Gabriele Barrera
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Federico Scaglione
- Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Interfaces and Surfaces), Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Federica Celegato
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Matteo Cialone
- Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Interfaces and Surfaces), Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Physics Department, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Marco Coïsson
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Paola Tiberto
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Jordi Sort
- Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Paola Rizzi
- Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Interfaces and Surfaces), Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Eva Pellicer
- Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
21
|
Wang Y, Shi N, He Y, Li Y, Zheng Q. A direct approach toward investigating DNA-ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2153-2160. [PMID: 36562542 DOI: 10.1039/d2cp04566d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules that interfere with DNA replication can trigger genomic instability, which makes these molecules valuable in the search for anticancer drugs. Thus, interactions between DNA and its ligands at the molecular level are of great significance. In the present study, a new method based on surface-enhanced Raman spectroscopy (SERS) combined with molecular dynamics simulations has been proposed for analyzing the interactions between DNA and its ligands. The SERS signals of DNA hairpins (ST: d(CGACCAACGTGTCGCCTGGTCG), AP1: d(CGCACAACGTGTCGCCTGTGCG)), pure argininamide, and their complexes, were obtained, and the characteristic peak sites of the DNA secondary structure and argininamide ligand-binding region were analyzed. Molecular dynamics calculations predicted that argininamide binds to the 8C and 9G bases of AP1 via hydrogen bonding. Our method successfully detected the changes of SERS fingerprint peaks of hydrogen bonds and bases between argininamide and DNA hairpin bases, and their binding sites and action modes were consistent with the predicted results of the molecular dynamics simulations. This SERS technology combined with the molecular dynamics simulation detection platform provides a general analysis tool, with the advantage of effective, rapid, and sensitive detection. This platform can obtain sufficient molecular level conformational information to provide avenues for rapid drug screening and promote progress in several fields, including targeted drug design.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Yingying He
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
22
|
Zhang F, Wang X, Zhang T, Zhang Z, Gao X, Li Y. Rapid Detection of SARS-CoV-2 Spike RBD Protein in Body Fluid: Based on Special Calcium Ion-Mediated Gold Nanoparticles Modified by Bromide Ions. J Phys Chem Lett 2023; 14:88-94. [PMID: 36573843 PMCID: PMC9843627 DOI: 10.1021/acs.jpclett.2c03069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The receptor-binding domain of the SARS-CoV-2 spike mediates the key to binding the virus to the host receptor, but capturing the molecular signal of this spike RBD remains a formidable challenge. Here, we report a new surface-enhanced Raman spectroscopy (SERS) approach, which used gold nanoparticles prepared by low-speed constant-temperature centrifugation by bromine and calcium ions in two cleaning steps as the enhanced substrate to rapidly and accurately detect spike RBD large protein molecules in body fluids. The detection signal was extremely stable, and the orientation of the spike RBD on the enhanced substrate surface was also determined. This approach was specific in distinguishing different SARS-CoV-2 variants of spike RBD, including Delta, Beta, Gamma, and Omicron. Additionally, the enhanced substrate can identify biologically active or inactive spike RBD. This two-step cleaning enhanced substrate opens up opportunities not only for early diagnostics of SARS-CoV-2 virus but also for developing targeted drugs against viruses.
Collapse
Affiliation(s)
- Fenghai Zhang
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Xiaotong Wang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Ting Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Zhe Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Xin Gao
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Yang Li
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| |
Collapse
|
23
|
Wang PS, Ma H, Yan S, Lu X, Tang H, Xi XH, Peng XH, Huang Y, Bao YF, Cao MF, Wang H, Huang J, Liu G, Wang X, Ren B. Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy. Chem Sci 2022; 13:13829-13835. [PMID: 36544733 PMCID: PMC9710310 DOI: 10.1039/d2sc04775f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research.
Collapse
Affiliation(s)
- Ping-Shi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xinyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hui Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Hui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yajun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jinglin Huang
- Laser Fusion Research Center, China Academy of Engineering Physics Mianyang 621900 China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University Xiamen 361005 China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
24
|
Abstract
In the last decade, there has been a rapid increase in the number of surface-enhanced Raman scattering (SERS) spectroscopy applications in medical research. In this article we review some recent, and in our opinion, most interesting and promising applications of SERS spectroscopy in medical diagnostics, including those that permit multiplexing within the range important for clinical samples. We focus on the SERS-based detection of markers of various diseases (or those whose presence significantly increases the chance of developing a given disease), and on drug monitoring. We present selected examples of the SERS detection of particular fragments of DNA or RNA, or of bacteria, viruses, and disease-related proteins. We also describe a very promising and elegant ‘lab-on-chip’ approach used to carry out practical SERS measurements via a pad whose action is similar to that of a pregnancy test. The fundamental theoretical background of SERS spectroscopy, which should allow a better understanding of the operation of the sensors described, is also briefly outlined. We hope that this review article will be useful for researchers planning to enter this fascinating field.
Collapse
|