1
|
Meier R, Hartop E, Pylatiuk C, Srivathsan A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230120. [PMID: 38705187 PMCID: PMC11070263 DOI: 10.1098/rstb.2023.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 05/07/2024] Open
Abstract
Holistic insect monitoring needs scalable techniques to overcome taxon biases, determine species abundances, and gather functional traits for all species. This requires that we address taxonomic impediments and the paucity of data on abundance, biomass and functional traits. We here outline how these data deficiencies could be addressed at scale. The workflow starts with large-scale barcoding (megabarcoding) of all specimens from mass samples obtained at biomonitoring sites. The barcodes are then used to group the specimens into molecular operational taxonomic units that are subsequently tested/validated as species with a second data source (e.g. morphology). New species are described using barcodes, images and short diagnoses, and abundance data are collected for both new and described species. The specimen images used for species discovery then become the raw material for training artificial intelligence identification algorithms and collecting trait data such as body size, biomass and feeding modes. Additional trait data can be obtained from vouchers by using genomic tools developed by molecular ecologists. Applying this pipeline to a few samples per site will lead to greatly improved insect monitoring regardless of whether the species composition of a sample is determined with images, metabarcoding or megabarcoding. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Rudolf Meier
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Christian Pylatiuk
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
2
|
Wang L, Cheng Y, Meftaul IM, Luo F, Kabir MA, Doyle R, Lin Z, Naidu R. Advancing Soil Health: Challenges and Opportunities in Integrating Digital Imaging, Spectroscopy, and Machine Learning for Bioindicator Analysis. Anal Chem 2024; 96:8109-8123. [PMID: 38490962 DOI: 10.1021/acs.analchem.3c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Affiliation(s)
- Liang Wang
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Islam Md Meftaul
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Muhammad Ashad Kabir
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
- School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, New South Wales 2795, Australia
| | - Richard Doyle
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
3
|
Ferris H, Benavides IV. Opinions and Suggestions on Nematode Faunal Analysis. J Nematol 2024; 56:20240049. [PMID: 39720190 PMCID: PMC11668516 DOI: 10.2478/jofnem-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 12/26/2024] Open
Abstract
We briefly review the history and development of recognizing nematode assemblages as indicators of environmental conditions. We highlight the effects of spatio-temporal successional changes in nematode assemblages on the auto-regeneration of ecosystem functions after disturbance. We expand on the need for herbivory components in the analysis of soil nematode assemblages in recognition of the important impact of plant parasitism on the resources and productivity of the soil system. Finally, we point out some important areas of research that would enhance the process and value of nematode faunal analysis. We include an evaluation of the current potential for molecular assessment of nematode abundance and function and for the application of artificial intelligence in automated nematode identification.
Collapse
Affiliation(s)
- Howard Ferris
- Department of Entomology and Nematology, University of California, Davis, California95616, USA
| | | |
Collapse
|
4
|
Thakar SP, Dabhi RC, Rathod SL, Patel UP, Rana A, Shrivastav PS, George LB, Highland H. In situ chlorpyrifos (CPF) degradation by Acrobeloides maximus: Insights from chromatographic analysis. J Chromatogr A 2024; 1714:464555. [PMID: 38091714 DOI: 10.1016/j.chroma.2023.464555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study was to evaluate the efficiency of nematodes in zooremediation of chlorpyrifos (CPF), an organophosphate pesticide. The nematode population Acrobeloides maximus (A. maximus) was employed for bioremediation, converting CPF into non-toxic residues. Optimal growth conditions for mass production of A. maximus were achieved by maintaining a temperature of 25 °C, pH 8, and supplementing the culture medium with plant nutrients. The nematodes were then immobilized within sodium alginate beads. The efficacy of the degradation process was assessed using various analytical techniques, including UV-Visible spectroscopy, HPTLC, FTIR, and LC-MS, confirming the successful breakdown of CPF. The bioreactor demonstrated a complete degradation efficiency of CPF exceeding 99%. Additionally, LC-MS analysis was conducted to elucidate the degradation pathway based on the formation of intermediates. These results underscore the potential of A. maximus as a sustainable organism for addressing environmental contamination arising from CPF pesticide.
Collapse
Affiliation(s)
- Shweta P Thakar
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India.
| | - Ranjitsinh C Dabhi
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Suryajit L Rathod
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Unnati P Patel
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Aasha Rana
- Department of Zoology, Faculty of Basic and Applied Sciences, Madhav University, Pindwara, Sirohi, Rajasthan 307026, India
| | - Pranav S Shrivastav
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
5
|
Liu B, Zhong H, Hu D. Construction of network-like cross-linked cellulose aerogel films with water-responsive properties for visualization of pH changes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|