1
|
Bruckschlegel C, Fleischmann V, Gajovic-Eichelmann N, Wongkaew N. Non-enzymatic electrochemical sensors for point-of-care testing: Current status, challenges, and future prospects. Talanta 2025; 291:127850. [PMID: 40049001 DOI: 10.1016/j.talanta.2025.127850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Current electrochemical sensors in point-of-care (POC) testing devices rely mainly on enzyme-based sensors owing to superior sensitivity and selectivity. Nevertheless, the poor stability, high reagent cost, complex fabrication methods and requirement of specific operational conditions make their adaptability in real-world applications unfavorable. Non-enzymatic electrochemical sensors are thus developed as they are more robust and cost-effective strategies. The advancement in material science and nanotechnology enables the development of novel non-enzymatic electrodes with favorable analytical performance. However, the developments are yet far from being adopted as viable products. This review therefore aims to gain insight into the field and evaluate the current progress and challenges to eventually propose future research directions. Here, fabrication strategies based on traditional and emerging technology are discussed in the light of analytical performance and cost-effectiveness. Moreover, the discussion is given on the pros and cons of non-enzymatic sensors when they are employed with various kinds of sample matrices, i.e., clinical and non-clinical samples, which must be taken into consideration for sensor development. Furthermore, molecular imprinting technology in tackling the selectivity issue is introduced and current progress is provided. Finally, the promising strategies from literature for solving the remaining challenges are included which could facilitate further development of robust POC testing devices based non-enzymatic sensors. We believe that once researchers and technology developers have reached the point where most problems are solved, the non-enzymatic sensors are going to be the robust choice for POC testing in clinical diagnostic, ensuring food safety, monitoring contaminants in environment, and bioprocess control.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Vivien Fleischmann
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Nenad Gajovic-Eichelmann
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Guo W, Li K, Yu H, Chang C, Zhu J, Li Q, Jiang C. Background-free luminescent and chromatic assay for strong visual detection of creatinine. Talanta 2025; 287:127631. [PMID: 39870022 DOI: 10.1016/j.talanta.2025.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine. DNBA undergoes a specific colorimetric reaction with creatinine, quenching the green upconversion luminescence (UCL) while leaving the red UCL unaffected, thus constructing the luminescent and colorimetric sensing modes for creatinine. The designed near-infrared excited sensing system eliminates auto-fluorescence with a multi-output signal, thereby enhancing the sensitivity and convenience of creatinine detection. Under optimal conditions, the detection limit in the colorimetric mode is 26 nM, while the detection limit in the luminescent mode is 2 nM. Moreover, a portable sensing platform is further developed, demonstrating sensitive sensing performance and paving a new way for point-of-care testing (POCT) of human body fluid biomarkers.
Collapse
Affiliation(s)
- Wenshuai Guo
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Kangran Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
3
|
Gungordu Er S, Bulathsinghala R, Kizilates SB, Li B, Ryan R, Tabish TA, Dharmasena I, Edirisinghe M. Multifunctional Conductive Nanofibers for Self-Powered Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416320. [PMID: 39965077 PMCID: PMC12079449 DOI: 10.1002/advs.202416320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Electrochemical glucose biosensors are essential for diabetes management, and self-powered systems present an eco-friendly and innovative alternative. Traditional biosensors face several limitations including limited sensitivity, enzyme instability, and dependency on external power sources. Addressing these issues, the study develops a novel multifunctional nanofiber integrating biosensor for glucose detection and a self-powered motion sensor, utilizing an innovative triboelectric nanogenerator (TENG) system. Electrospun nanofibers, composed of graphene oxide (GO), porous graphene (PG), graphene foam (GF), polypyrrole (PPy), and polycaprolactone (PCL), demonstrate enhanced electrical conductivity, triboelectric efficiency, and mechanical strength. Among these, dip-coated nanofibers exhibited the highest conductivity of 4.9 × 10⁻⁵ S/cm, attributed to superior surface electrical properties of GO. PCL/PPy/GO nanofibers achieved the highest glucose detection performance in cyclic voltammetry and differential pulse voltammetry due to efficient electron transfer mechanisms of GO and PPy. Additionally, triboelectric tests revealed peak voltages of 63V with PCL/PPy/GO and polyvinylidene fluoride nanofibers containing glucose oxidase enzyme. Core-sheath and dip-coated nanofibers also demonstrated significant mechanical resilience (∼0.9 N force, ∼350 s durability). These findings highlight PCL/PPy/GO nanofibers as a multifunctional, efficient, and scalable solution, offering highly sensitive glucose detection and non-invasive sweat analysis along with robust energy harvesting for environmentally friendly and advanced diabetes management systems.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Rameesh Bulathsinghala
- Wolfson School of MechanicalElectrical and Manufacturing EngineeringLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Bing Li
- The Institute for Materials DiscoveryUniversity College LondonLondonWC1E 7JEUK
| | - Rucchi Ryan
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
| | - Ishara Dharmasena
- Wolfson School of MechanicalElectrical and Manufacturing EngineeringLoughborough UniversityLoughboroughLE11 3TUUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
| |
Collapse
|
4
|
Wang Q, Zhao ZA, Yao KY, Cheng YL, Wong DSH, Wong DWC, Cheung JCW. The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring. BIOSENSORS 2025; 15:193. [PMID: 40136991 PMCID: PMC11940136 DOI: 10.3390/bios15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zi-An Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ke-Yu Yao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuk-Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Dexter Siu-Hong Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
5
|
Liu R, Zhao M, Zhang X, Zhang C, Ren B, Ma J. Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety. Crit Rev Anal Chem 2025:1-19. [PMID: 39912733 DOI: 10.1080/10408347.2025.2460751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Meiting Zhao
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Xin Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Binqiao Ren
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
6
|
Li Y, Luo L, Senicar L, Asrosa R, Kizilates B, Xing K, Torres E, Xu L, Li D, Graham N, Heslegrave A, Zetterberg H, Sharp DJ, Li B. An Ultrasensitive Molecularly Imprinted Point-Of-Care Electrochemical Sensor for Detection of Glial Fibrillary Acidic Protein. Adv Healthc Mater 2024; 13:e2401966. [PMID: 39221506 PMCID: PMC11616259 DOI: 10.1002/adhm.202401966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Accurate assessment of neurological disease through monitoring of biomarkers has been made possible using the antibody-based assays. But these assays suffer from expensive development of antibody probes, reliance on complicated equipments, and high maintenance costs. Here, using the novel reduced graphene oxide/polydopamine-molecularly imprinted polymer (rGO/PDA-MIP) as the probe layer, a robust electrochemical sensing platform is demonstrated for the ultrasensitive detection of glial fibrillary acidic protein (GFAP), a biomarker for a range of neurological diseases. A miniaturized integrated circuit readout system is developed to interface with the electrochemical sensor, which empowers it with the potential to be used as a point-of-care (POC) diagnostic tool in primary clinical settings. This innovative platform demonstrated good sensitivity, selectivity, and stability, with imprinting factor evaluated as 2.8. A record low limit-of-detection (LoD) is down to 754.5 ag mL-1, with a wide dynamic range from 1 to 106 fg mL-1. The sensing platform is validated through the analysis of GFAP in clinical plasma samples, yielding a recovery rate range of 81.6-108.8% compared to Single Molecule Array (Simoa). This cost-effective and user-friendly sensing platform holds the potential to be deployed in primary and resource-limited clinical settings for the assessment of neurological diseases.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Liuxiong Luo
- School of Materials Science and EngineeringCentral South UniversityChangsha410083P. R. China
| | - Lenart Senicar
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Rica Asrosa
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Burcu Kizilates
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Kaizhong Xing
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Elias Torres
- Graphenea SemiconductorPaseo Mikeletegi 83San Sebastián20009Spain
| | - Lizhou Xu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215P. R. China
| | - Danyang Li
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Neil Graham
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCLUniversity College LondonLondonWC1E 6BTUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonWC1E 6BTUK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCLUniversity College LondonLondonWC1E 6BTUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonWC1E 6BTUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalS‐431 80Sweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalS‐431 80Sweden
- Hong Kong Centre for Neurodegenerative DiseasesHong Kong999077P. R. China
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWI53792USA
| | - David J. Sharp
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
- Care Research & Technology CentreUK Dementia Research InstituteLondonW12 0BZUK
| | - Bing Li
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
- Care Research & Technology CentreUK Dementia Research InstituteLondonW12 0BZUK
| |
Collapse
|
7
|
Fu D, Zhang B, Zhang S, Dong Y, Deng J, Shui H, Liu X. An electrochemical point-of-care testing device for specific diagnosis of the albinism biomarker based on paradigm shift designs. Biosens Bioelectron 2024; 264:116645. [PMID: 39142228 DOI: 10.1016/j.bios.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
L-tyrosine is a recognized biomarker of albinism, whose endogenous level in human bodies is directly linked to melanin synthesis while no attention has been paid to its specific diagnosis. To this end, we have developed an electrochemical point-of-care testing device based on a molecularly imprinted gel prepared by a universal paradigm shift design to achieve the enhanced specific recognition of the L-tyrosine. Interestingly, this theoretically optimized molecularly imprinted gel validates the recognition pattern of L-tyrosine and optimizes the structure of the polymer itself with the aid of computational chemistry. Besides, modified extended-layer MXene and Au nanoclusters have significantly improved the sensing activity. As a result, the linear diagnostic range of this electrochemical point-of-care testing device for L-tyrosine is 0.1-100 μM in actual human fluids, which fully covers the L-tyrosine levels of healthy individuals and people with albinism. The diagnosis is completed in 90 s and then the results are transmitted by Bluetooth low energy to the smart mobile terminal. Therefore, we are convinced that this electrochemical point-of-care testing device is a promising tool in the future smart medical system.
Collapse
Affiliation(s)
- Donglei Fu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, PR China
| | - Bowen Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Shuaibo Zhang
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, PR China
| | - Yueyan Dong
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, PR China
| | - Junjie Deng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, PR China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, PR China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Hu G, Cui S, Wang H, Shi Y, Li Z. Mechanism of high sensitivity proton acids doped polypyrrole molecularly imprinted electrochemical sensor and its application in urea detection. Talanta 2024; 278:126514. [PMID: 38986310 DOI: 10.1016/j.talanta.2024.126514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Molecularly imprinted electrochemical sensor is a kind of convenient, fast, and stable analyzer, but the conductivity of electrode materials and their affinity with the analyte affect its performance. A proton acid (PSS, SA, SSA) doping method was proposed to improve the electrochemical performance of the polypyrrole molecularly imprinted polymer (PPy-MIP), which promoted the electropolymerization of pyrrole, reduced the charge transfer resistance, and increased the electrochemical surface area. In terms of both improving conductivity and affinity, the response of the proton acids doped the polypyrrole molecularly imprinted electrochemical sensors (PPy-MIECS) to urea was improved by 25-fold (PSS), 5-fold (SA), and 3-fold (SSA) over that of PPy-MIECS. In addition, the PSS-PPy-MIECS was validated for the practical application with a linear detection range from 0.1 mM to 100 mM, high selectivity (α = 39.73), reusability (RSD% = 4.54 %), reproducibility (RSD% = 0.93 %), and stability (11 days). The advantage of proton acid doping method in PSS-PEDOT-MIECS to urea and PSS-PPy-MIECS to glucose extended its application in the performance enhancement of MIECS design.
Collapse
Affiliation(s)
- Guangxing Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuang Cui
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266200, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Li Y, Hang Y, Gopali R, Xu X, Chen G, Guan X, Bao N, Liu Y. Point-of-care testing device platform for the determination of creatinine on an enzyme@CS/PB/MXene@AuNP-based screen-printed carbon electrode. Mikrochim Acta 2024; 191:534. [PMID: 39136796 DOI: 10.1007/s00604-024-06606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Screen-printed carbon electrodes (SPCE) functionalized with MXene-based three-dimensional nanomaterials are reported for rapid determination of creatinine. Ti3C2TX MXene with in situ reduced AuNPs (MXene@AuNP) were used as a coreactant accelerator for efficient immobilization of enzymes. Creatinine could be oxidized by chitosan-embedded creatinine amidohydrolase, creatine amidinohydrolase, or sarcosine oxidase to generate H2O2, which could be electrochemically detected enhanced by Prussian blue (PB). The enzyme@CS/PB/MXene@AuNP/SPCE detected creatinine within the range 0.03-4.0 mM, with a limit of detection of 0.01 mM, with an average recovery of 96.8-103.7%. This indicates that the proposed biosensor is capable of detecting creatinine in a short amount of time (4 min) within a ± 5% percentage error, in contrast with the standard clinical colorimetric method. With this approach, reproducible and stable electrochemical responses could be achieved for determination of creatinine in serum, urine, or saliva. These results demonstrated its potential for deployment in resource-limited settings for early diagnosis and tracking the progression of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Rusha Gopali
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xinxin Xu
- Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guanhua Chen
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xiaorong Guan
- Jiangsu Aowei Engineering Technology Co., LTD, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Bisht N, Patel M, Mondal DP, Srivastava AK, Dwivedi N, Dhand C. Comparative performance analysis of mussel-inspired polydopamine, polynorepinephrine, and poly-α-methyl norepinephrine in electrochemical biosensors. Mikrochim Acta 2024; 191:456. [PMID: 38980419 DOI: 10.1007/s00604-024-06521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.
Collapse
Affiliation(s)
- Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Li Y, Kong Y, Hu Y, Li Y, Asrosa R, Zhang W, Deka Boruah B, Yetisen AK, Davenport A, Lee TC, Li B. A paper-based dual functional biosensor for safe and user-friendly point-of-care urine analysis. LAB ON A CHIP 2024; 24:2454-2467. [PMID: 38644805 PMCID: PMC11060138 DOI: 10.1039/d4lc00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 μA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.
Collapse
Affiliation(s)
- Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Rica Asrosa
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Wenyu Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Buddha Deka Boruah
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
12
|
Rocha J, de Oliveira JC, Bettini J, Strauss M, Selmi GS, Okazaki AK, de Oliveira RF, Lima RS, Santhiago M. Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine. ACS MEASUREMENT SCIENCE AU 2024; 4:188-200. [PMID: 38645575 PMCID: PMC11027207 DOI: 10.1021/acsmeasuresciau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.
Collapse
Affiliation(s)
- Jaqueline
F. Rocha
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| | - Julia C. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Jefferson Bettini
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Mathias Strauss
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Guilherme S. Selmi
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Anderson K. Okazaki
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Rafael F. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Renato S. Lima
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
- Institute
of Chemistry, University of Campinas, São Paulo, Campinas 13083-970, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, São Paulo, São Carlos 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| |
Collapse
|
13
|
Huang J, Sokolikova M, Ruiz-Gonzalez A, Kong Y, Wang Y, Liu Y, Xu L, Wang M, Mattevi C, Davenport A, Lee TC, Li B. Ultrasensitive colorimetric detection of creatinine via its dual binding affinity for silver nanoparticles and silver ions. RSC Adv 2024; 14:9114-9121. [PMID: 38500617 PMCID: PMC10946247 DOI: 10.1039/d3ra08736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Creatinine is an important biomarker for the diagnosis of chronic kidney disease (CKD). Recently, it has been reported that the concentration of salivary creatinine correlates well with the concentration of serum creatinine, which makes the former useful for the development of non-invasive and point-of-care (POC) detection for CKD diagnosis. However, there exists a technical challenge in the rapid detection of salivary creatinine at low concentrations of 3-18 μM when using the current kidney function test strips as well as the traditional methods employed in hospitals. Herein, we demonstrate a simple, sensitive colorimetric assay for the detection of creatinine with a limit-of-detection (LOD) down to the nanomolar level. Our approach utilises the dual binding affinity of creatinine for citrate-capped silver nanoparticles (Ag NPs) and Ag(i) ions, which can trigger the aggregation of Ag NPs and thus lead to the colour change of a sample. The quantitative detection of creatinine was achieved using UV-Vis spectroscopy with a LOD of 6.9 nM in artificial saliva and a linear dynamic range of 0.01-0.06 μM. This method holds promise to be further developed into a POC platform for the CKD diagnosis.
Collapse
Affiliation(s)
- Jingle Huang
- Institute for Materials Discovery, University College London London WC1H 0AJ UK
| | - Maria Sokolikova
- Department of Materials, Imperial College London London SW7 2AZ UK
| | | | - Yingqi Kong
- Institute for Materials Discovery, University College London London WC1H 0AJ UK
| | - Yuxuan Wang
- Department of Materials, Imperial College London London SW7 2AZ UK
| | - Yingjia Liu
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Centre Hangzhou 311200 China
| | - Lizhou Xu
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Centre Hangzhou 311200 China
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London London WC1H 0AJ UK
| | - Cecilia Mattevi
- Department of Materials, Imperial College London London SW7 2AZ UK
| | - Andrew Davenport
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Centre Hangzhou 311200 China
- Department of Renal Medicine, Royal Free Hospital, University College London NW3 2PF UK
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London London WC1H 0AJ UK
| | - Bing Li
- Institute for Materials Discovery, University College London London WC1H 0AJ UK
| |
Collapse
|
14
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
15
|
Lu Y, Shen N, Xi Y, Zhu T, Peng H, Zhong L, Li F. Bioenzyme-free colorimetric assay for creatinine determination based on Mn 3O 4 nanoparticles catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine. Mikrochim Acta 2023; 191:44. [PMID: 38114756 DOI: 10.1007/s00604-023-06129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Mn3O4 nanozyme with good oxidase-like activity was successfully synthesized. The prepared Mn3O4 nanozyme can directly and effectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate green-blue-colored ox-TMB. Creatinine exhibits distinct inhibition effect on Mn3O4 nanozyme-catalyzed TMB colorimetric reaction system, leading to obvious color fading and absorbance intensity decrease of the reaction system. Furthermore, interference from uric acid can be effectively eliminated by regulating the pH of TMB-Mn3O4 colorimetric reaction system to pH 2.0. Then, a simple and bioenzyme-free colorimetric assay for the determination of creatinine was developed based on TMB-Mn3O4 colorimetric reaction. The linear detection range is from 100 to 800 μM and from 1 to 20 mM. The lowest limit of detection is 35.3 μM. Satisfied results are obtained for the determination of creatinine in real urine and sweat samples. This work provides the synthesis of a good oxidase-like nanozyme Mn3O4 and presents the fabrication of an effective nanozyme-based bioenzyme-free colorimetric assay for the determination of creatinine.
Collapse
Affiliation(s)
- Yuyang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Nuotong Shen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Tao Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Hao Peng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Lihao Zhong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
16
|
Cheng YH, Chande C, Li Z, Haridas Menon N, Kaaliveetil S, Basuray S. Optimization of Electrolytes with Redox Reagents to Improve the Impedimetric Signal for Use with a Low-Cost Analyzer. BIOSENSORS 2023; 13:999. [PMID: 38131759 PMCID: PMC10741443 DOI: 10.3390/bios13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The most well-known criterion for POC devices is ASSURED, and affordability, i.e., using low-cost instrumentation, is the most challenging one. This manuscript provides a pathway for transitioning ESSENCE, an impedance-based biosensor platform, from using an expensive benchtop analyzer-KeySight 4294A (~$50k)-to using a significantly portable and cheaper USB oscilloscope-Analog Discovery 2 (~$200) -with similar sensitivity (around 100 times price difference). To achieve this, we carried out a fundamental study of the interplay between an electrolyte like potassium chloride (KCl), and an electrolyte buffer like phosphate buffered saline (PBS) in the presence and absence of a redox buffer like ferro/ferricyanide system and ([Ru(bpy)3]2+). Redox molecules in the electrolyte caused a significant change in the Nyquist curve of the impedance depending on the redox molecule type. The redox species and the background electrolyte have their own RC semicircles in the Nyquist curve, whose overlap depends on the redox concentration and electrolyte ionic strength. We found that by increasing the electrolyte ionic strength or the redox concentration, the RC semicircle moves to higher frequencies and vice versa. Importantly, the use of the buffer electrolyte, instead of KCl, led to a lower standard deviation and overall signal (lesser sensitivity). However, to achieve the best results from the biorecognition signal, we chose a buffered electrolyte like PBS with high ionic strength and lowered the redox probe concentrations to minimize the standard deviation and reduce any noise from migrating to the low-cost analyzer. Comparing the two analyzers shows similar results, with a lowered detection limit from the low-cost analyzer.
Collapse
Affiliation(s)
| | | | | | | | | | - Sagnik Basuray
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
18
|
Ramajayam K, Ganesan S, Ramesh P, Beena M, Kokulnathan T, Palaniappan A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics (Basel) 2023; 8:245. [PMID: 37366840 DOI: 10.3390/biomimetics8020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Molecularly imprinted polymers (MIPs), a biomimetic artificial receptor system inspired by the human body's antibody-antigen reactions, have gained significant attraction in the area of sensor development applications, especially in the areas of medical, pharmaceutical, food quality control, and the environment. MIPs are found to enhance the sensitivity and specificity of typical optical and electrochemical sensors severalfold with their precise binding to the analytes of choice. In this review, different polymerization chemistries, strategies used in the synthesis of MIPs, and various factors influencing the imprinting parameters to achieve high-performing MIPs are explained in depth. This review also highlights the recent developments in the field, such as MIP-based nanocomposites through nanoscale imprinting, MIP-based thin layers through surface imprinting, and other latest advancements in the sensor field. Furthermore, the role of MIPs in enhancing the sensitivity and specificity of sensors, especially optical and electrochemical sensors, is elaborated. In the later part of the review, applications of MIP-based optical and electrochemical sensors for the detection of biomarkers, enzymes, bacteria, viruses, and various emerging micropollutants like pharmaceutical drugs, pesticides, and heavy metal ions are discussed in detail. Finally, MIP's role in bioimaging applications is elucidated with a critical assessment of the future research directions for MIP-based biomimetic systems.
Collapse
Affiliation(s)
- Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Purnimajayasree Ramesh
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
19
|
Electrochemical sensor for detecting streptomycin in milk based on label-free aptamer chain and magnetic adsorption. Food Chem 2023; 403:134399. [DOI: 10.1016/j.foodchem.2022.134399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
|
20
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|