1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
3
|
Zhang X, Li C, Guan X, Chen Y, Zhou Q, Feng H, Deng Y, Fu C, Deng G, Li J, Liu S. A selenium-based NIR-II photosensitizer for a highly effective and safe phototherapy plan. Analyst 2024; 149:859-869. [PMID: 38167646 DOI: 10.1039/d3an01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.
Collapse
Affiliation(s)
- Xiangqian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chonglu Li
- National Key Laboratory of Green Pesticides, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiaofang Guan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qingqing Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huili Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Cheng Fu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Ganzhen Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junrong Li
- National Key Laboratory of Green Pesticides, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|