1
|
Xie F, Gao J, Tian Q, Li C, Zhu R, Xu S, Li M, Zhang Y. An optical sensor for ppb-level exhaled acetone detection based on UV-DOAS and spectral upscaling. Talanta 2025; 292:127965. [PMID: 40112590 DOI: 10.1016/j.talanta.2025.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The method of detecting acetone levels in breath presents a promising approach for monitoring diabetes mellitus (DM). Consequently, the detection of acetone in exhaled breath is garnering significant attention. However, using ultraviolet differential optical absorption spectroscopy (UV-DOAS) for detection of the exhaled acetone has rarely been proposed due to the complex composition of exhaled gases and the baseline drift caused by the acetone absorption feature. In this study, we present an optical sensor based on an improved UV-DOAS and spectral upgrading, enabling the detection of exhaled acetone in the sub-200 nm wavelength band for the first time. Firstly, the overall fitting process in the UV-DOAS was improved to segmental fitting to address the issue of baseline drift, resulting in a standard differential absorption spectrum for acetone. Secondly, a spectral upscaling concentration inversion method based on wavelet coefficient matrix is proposed. This helps effectively handle spectral overlaps among oxygen (O2), ammonia (NH3), and acetone through the additional time-frequency information provided by spectral upscaling. Laboratory-based results demonstrate that our sensor achieves a detection limit of 14.97 ppb∗m, representing exceptional performances. Tests on human exhaled breath samples revealed that the sensor can detect acetone at ppb levels, with concentrations rising alongside increased lipid metabolism. Our optical sensor offers high accuracy and stability, demonstrating significant potential and value for non-invasive early diabetes diagnosis.
Collapse
Affiliation(s)
- Fei Xie
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jie Gao
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Qi Tian
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Changyin Li
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Rui Zhu
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shufeng Xu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Mu Li
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yungang Zhang
- Key Laboratory of Intelligent Control and Neural Information Processing, Ministry of Education, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Liang J, Liu C, Xu T. Innovative biosensing smart masks: unveiling the future of respiratory monitoring. MATERIALS HORIZONS 2025. [PMID: 40384465 DOI: 10.1039/d5mh00279f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Real-time monitoring of respiratory health is increasingly critical, particularly in addressing global health challenges such as Corona Virus Disease 2019 (COVID-19). Smart masks equipped with biosensing mechanisms revolutionize respiratory health monitoring by enabling real-time detection of respiratory parameters and biomarkers. In recent years, significant advancements have been achieved in the development of smart masks based on different sensor types with high sensitivity and accuracy, flexible functionality, and portability, providing new approaches for remote and real-time monitoring of respiratory parameters and biomarkers. In this review, we aim to provide a comprehensive overview of the current state of development and future potential of biosensing smart masks in various domains. This review outlines a systematic categorization of smart masks according to diverse sensing principles, classifying them into six categories: electrochemical sensors, optical sensors, piezoelectric sensors, and others. This review discusses the basic sensing principles and mechanisms of smart masks and describes the existing research developments of their different biosensors. Additionally, it explores the innovative applications of smart masks in health monitoring, protective functions, and expanding application scenarios. This review also identifies the current challenges faced by smart masks, including issues with sensor accuracy, environmental interference, and the need for better integration of multifunctional features. Proposed solutions to these challenges are discussed, along with the anticipated role of smart masks in early disease detection, personalized medicine, and environmental protection.
Collapse
Affiliation(s)
- Jiahui Liang
- College of Chemistry and Environmental Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
3
|
Capuano R, Allegra V, Catini A, Magna G, Di Lauro M, Marrone G, Agresti A, Pescetelli S, Pieri M, Paolesse R, Bernardini S, Noce A, Di Natale C. Disposable Sensor Array Embedded in Facemasks for the Identification of Chronic Kidney Disease. ACS Sens 2025. [PMID: 40331635 DOI: 10.1021/acssensors.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The increasing global burden of chronic kidney disease (CKD) necessitates the development of simple and inexpensive diagnostic tools. Capitalizing on the relationship between breath composition and CKD, we introduce a disposable array of four resistive gas sensors printed on a low-cost, disposable substrate and embedded in the internal layers of FFP2 facemasks. Sensors are based on blends of porphyrins─a molecular family often used in breath analysis─and the PEDOT/PSS conducting polymer. The individual sensors demonstrate remarkable sensitivity to ammonia and other CKD-related volatile compounds, while the combinatorial selectivity of the sensor array enables the identification of volatile compounds regardless of their concentration. The diagnostic capabilities of the device were tested on a cohort of CKD patients and a control group. To address the absence of a reference gas inside the facemask, we developed a measurement protocol based on breathing cycles at different rates. The application of a continuous wavelet transform to the sensor signals produces stable and reproducible features. Linear Discriminant Analysis of sensor features achieved the identification of CKD patients with 93.3% true positives and 86.7% true negatives. Additional evidence suggests that the sensor array can stratify CKD patients according to the severity of renal dysfunction, indicating its potential use in monitoring disease progression.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Valerio Allegra
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Gabriele Magna
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Agresti
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Sara Pescetelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Roberto Paolesse
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italy
| | - Sergio Bernardini
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
- Nephrology and Dialysis Unit, Policlinico Tor Vergata, Via Oxford, Roma 00133, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
- Interdepartmental Centre for Volatilomics "A. D'Amico", University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| |
Collapse
|
4
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
5
|
Srikrajang S, Kabir L, Sagadevan S, Wijaya K, Oh WC. Representative modeling of biocompatible MXene nanocomposites for next-generation biomedical technologies and healthcare. J Mater Chem B 2025; 13:2912-2951. [PMID: 39886804 DOI: 10.1039/d4tb02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
MXenes are a class of 2D transition metal carbides and nitrides (Mn+1XnT) that have attracted significant interest owing to their remarkable potential in various fields. The unique combination of their excellent electromagnetic, optical, mechanical, and physical properties have extended their applications to the biological realm as well. In particular, their ultra-thin layered structure holds specific promise for diverse biomedical applications. This comprehensive review explores the synthesis methods of MXene composites, alongside the biological and medical design strategies that have been employed for their surface engineering. This review delves into the interplay between these strategies and the resulting properties, biological activities, and unique effects at the nano-bio-interface. Furthermore, the latest advancements in MXene-based biomaterials and medicine are systematically summarized. Further discussion on MXene composites designed for various applications, including biosensors, antimicrobial agents, bioimaging, tissue engineering, and regenerative medicine, are also provided. Finally, with a focus on translating research results into real-world applications, this review addresses the current challenges and exciting future prospects of MXene composite-based biomaterials.
Collapse
Affiliation(s)
- Siwaluk Srikrajang
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Latiful Kabir
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| |
Collapse
|
6
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Liu K, Lin M, Zhao Z, Zhang K, Yang S. Rational Design and Application of Breath Sensors for Healthcare Monitoring. ACS Sens 2025; 10:15-32. [PMID: 39740129 DOI: 10.1021/acssensors.4c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Biomarkers contained in human exhaled breath are closely related to certain diseases. As a noninvasive, portable, and efficient health diagnosis method, the breath sensor has received considerable attention in recent years for early disease screening and prevention due to its user-friendly and easy-accessible features. Although some key challenges have been addressed, its capability to precisely monitor specific biomarkers of interest and its physiological relevance to health metrics is still to be ascertained. In this context, we analyzed the rational design and recent advance of breath sensors for healthcare monitoring. This review begins with an introduction to exhaled breath biomarkers and their sensing technologies, such as chemoresistive, humidity-sensitive, electrochemical, and colorimetric principles. Then, a systematic overview of their emerging applications in early disease screening, drunk driving inspection, apnea monitoring, and exhaled breath condensate analysis are demonstrated. Finally, we discuss the challenges and opportunities of breath sensors for noninvasive healthcare monitoring. With the ongoing research efforts, the continuous breakthrough in breath sensors and their attractive applications is foreseeable in the future.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Zhihui Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, 100015Beijing, PR China
| |
Collapse
|
8
|
Marfatia K, Ni J, Preda V, Nasiri N. Is Breath Best? A Systematic Review on the Accuracy and Utility of Nanotechnology Based Breath Analysis of Ketones in Type 1 Diabetes. BIOSENSORS 2025; 15:62. [PMID: 39852113 PMCID: PMC11763468 DOI: 10.3390/bios15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is critical for the effective management of diabetic ketoacidosis (DKA). This systematic review evaluates the current literature on breath-based analysis for ketone detection in T1DM, highlighting nanotechnology as a potential for a non-invasive alternative to blood-based ketone measurements. A comprehensive search across 5 databases identified 11 studies meeting inclusion criteria, showcasing various breath analysis techniques, such as semiconducting gas sensors, colorimetry, and nanoparticle-based chemo-resistive sensors. These studies report high sensitivity and correlation between breath acetone (BrAce) levels and blood ketones, with some demonstrating accuracies up to 94.7% and correlations reaching R2 values as high as 0.98. However, significant heterogeneity in methodologies and cut-off values limits device comparability and precludes meta-analysis. Despite these challenges, the findings indicate that BrAce monitoring could offer significant clinical benefits by enabling the earlier detection of ketone buildup, reducing DKA-related hospitalisations and healthcare costs. Standardising BrAce measurement techniques and sensitivity thresholds is essential to broaden clinical adoption. This review underscores the promise of nanotechnology-based breath analysis as a transformative tool for DKA management, with potential utility across varied ketotic conditions.
Collapse
Affiliation(s)
- Kamal Marfatia
- Faculty of Medicine, Health and Health Sciences, Macquarie University, Level 3, 75 Talevera Road, Macquarie Park, NSW 2113, Australia; (J.N.); (V.P.)
| | - Jing Ni
- Faculty of Medicine, Health and Health Sciences, Macquarie University, Level 3, 75 Talevera Road, Macquarie Park, NSW 2113, Australia; (J.N.); (V.P.)
| | - Veronica Preda
- Faculty of Medicine, Health and Health Sciences, Macquarie University, Level 3, 75 Talevera Road, Macquarie Park, NSW 2113, Australia; (J.N.); (V.P.)
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
- Smart Green Cities Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Song Y, Wang X, Wang L, Qu L, Zhang X. Functionalized Face Masks as Smart Wearable Sensors for Multiple Sensing. ACS Sens 2024; 9:4520-4535. [PMID: 39297358 DOI: 10.1021/acssensors.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Wearable sensors provide continuous physiological information and measure deviations from healthy baselines, resulting in the potential to personalize health management and diagnosis of diseases. With the emergence of the COVID-19 pandemic, functionalized face masks as smart wearable sensors for multimodal and/or multiplexed measurement of physical parameters and biochemical markers have become the general population for physiological health management and environmental pollution monitoring. This Review examines recent advances in applications of smart face masks based on implantation of digital technologies and electronics and focuses on respiratory monitoring applications with the advantages of autonomous flow driving, enrichment enhancement, real-time monitoring, diversified sensing, and easily accessible. In particular, the detailed introduction of diverse respiratory signals including physical, inhalational, and exhalant signals and corresponding associations of health management and environmental pollution is presented. In the end, we also provide a personal perspective on future research directions and the remaining challenges in the commercialization of smart functionalized face masks for multiple sensing.
Collapse
Affiliation(s)
- Yongchao Song
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiyan Wang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Lirong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xian, Shaanxi 710126, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
10
|
Chaudhary V, Taha BA, Lucky, Rustagi S, Khosla A, Papakonstantinou P, Bhalla N. Nose-on-Chip Nanobiosensors for Early Detection of Lung Cancer Breath Biomarkers. ACS Sens 2024; 9:4469-4494. [PMID: 39248694 PMCID: PMC11443536 DOI: 10.1021/acssensors.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Lung cancer remains a global health concern, demanding the development of noninvasive, prompt, selective, and point-of-care diagnostic tools. Correspondingly, breath analysis using nanobiosensors has emerged as a promising noninvasive nose-on-chip technique for the early detection of lung cancer through monitoring diversified biomarkers such as volatile organic compounds/gases in exhaled breath. This comprehensive review summarizes the state-of-the-art breath-based lung cancer diagnosis employing chemiresistive-module nanobiosensors supported by theoretical findings. It unveils the fundamental mechanisms and biological basis of breath biomarker generation associated with lung cancer, technological advancements, and clinical implementation of nanobiosensor-based breath analysis. It explores the merits, challenges, and potential alternate solutions in implementing these nanobiosensors in clinical settings, including standardization, biocompatibility/toxicity analysis, green and sustainable technologies, life-cycle assessment, and scheming regulatory modalities. It highlights nanobiosensors' role in facilitating precise, real-time, and on-site detection of lung cancer through breath analysis, leading to improved patient outcomes, enhanced clinical management, and remote personalized monitoring. Additionally, integrating these biosensors with artificial intelligence, machine learning, Internet-of-things, bioinformatics, and omics technologies is discussed, providing insights into the prospects of intelligent nose-on-chip lung cancer sniffing nanobiosensors. Overall, this review consolidates knowledge on breathomic biosensor-based lung cancer screening, shedding light on its significance and potential applications in advancing state-of-the-art medical diagnostics to reduce the burden on hospitals and save human lives.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Physics
Department, Bhagini Nivedita College, University
of Delhi, 110043 Delhi, India
- Centre
for Research Impact & Outcome, Chitkara
University, Punjab 140401, India
| | - Bakr Ahmed Taha
- Department
of Electrical, Electronic and Systems Engineering, Faculty of Engineering
and Built Environment, Universiti Kebangsaan
Malaysia, UKM, 43600 Bangi, Malaysia
| | - Lucky
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, 110007 Delhi, India
| | - Sarvesh Rustagi
- School
of Applied and Life Sciences, Uttaranchal
University, Dehradun, Uttarakhand 248007, India
| | - Ajit Khosla
- School of
Advanced Materials and Nanotechnology, Xidian
University, Xi’an 710126, China
| | - Pagona Papakonstantinou
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
- Healthcare
Technology Hub, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom
| |
Collapse
|
11
|
Srikrishnarka P, Haapasalo J, Hinestroza JP, Sun Z, Nonappa. Wearable Sensors for Physiological Condition and Activity Monitoring. SMALL SCIENCE 2024; 4:2300358. [PMID: 40212111 PMCID: PMC11935081 DOI: 10.1002/smsc.202300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Indexed: 04/13/2025] Open
Abstract
Rapid technological advancements have transformed the healthcare sector from traditional diagnosis and treatment to personalized health management. Biofluids such as teardrops, sweat, interstitial fluids, and exhaled breath condensate offer a rich source of metabolites that can be linked to the physiological status of an individual. More importantly, these biofluids contain biomarkers similar to those in the blood. Therefore, developing sensors for the noninvasive determination of biofluid-based metabolites can overcome traditionally invasive and laborious blood-test-based diagnostics. In this context, wearable devices offer real-time and continuous physiological conditions and activity monitoring. The first-generation wearables included wristwatches capable of tracking heart rate variations, breathing rate, body temperature, stress responses, and sleeping patterns. However, wearable sensors that can accurately measure the metabolites are needed to achieve real-time analysis of biomarkers. In this review, recent progresses in wearable sensors utilized to monitor metabolites in teardrops, breath condensate, sweat, and interstitial fluids are thoroughly analyzed. More importantly, how metabolites can be selectively detected, quantified, and monitored in real-time is discussed. Furthermore, the review includes a discussion on the utility of, multifunctional sensors that combine metabolite sensing, human activity monitoring, and on-demand drug delivery system for theranostic applications.
Collapse
Affiliation(s)
| | - Joonas Haapasalo
- Department of NeurosurgeryTampere University Hospital and Tampere UniversityKuntokatu 233520TampereFinland
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
| | - Zhipei Sun
- Department of Electronics and NanoengineeringAalto UniversityP.O. Box 13500FI‐00076AaltoFinland
- QTF Center of ExcellenceDepartment of Applied PhysicsAalto University00076AaltoFinland
| | - Nonappa
- Faculty of Engineering and Natural SciencesKorkeakoulunkatu 6FI‐33720TampereFinland
| |
Collapse
|
12
|
Shao B, Chen X, Chen X, Peng S, Song M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4092. [PMID: 39000870 PMCID: PMC11244375 DOI: 10.3390/s24134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xiaotong Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xingwei Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Jiang L, Li Q, Lv S, Wang B, Pan S, Sun P, Zheng J, Liu F, Lu G. Mixed Potential Type Isoprene Sensor for the Application in Real-Time Monitoring of Biomarker Gases. ACS Sens 2024; 9:1575-1583. [PMID: 38483350 DOI: 10.1021/acssensors.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qiule Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Siyuan Lv
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bin Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Si Pan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jie Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
14
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
15
|
Li X, Sun R, Pan J, Shi Z, Lv J, An Z, He Y, Chen Q, Han RPS, Zhang F, Lu Y, Liang H, Liu Q. All-MXene-Printed RF Resonators as Wireless Plant Wearable Sensors for In Situ Ethylene Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207889. [PMID: 36899491 DOI: 10.1002/smll.202207889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Printed flexible electronics have emerged as versatile functional components of wearable intelligent devices that bridge the digital information networks with biointerfaces. Recent endeavors in plant wearable sensors provide real-time and in situ insights to study phenotyping traits of crops, whereas monitoring of ethylene, the fundamental phytohormone, remains challenging due to the lack of flexible and scalable manufacturing of plant wearable ethylene sensors. Here the all-MXene-printed flexible radio frequency (RF) resonators are presented as plant wearable sensors for wireless ethylene detection. The facile formation of additive-free MXene ink enables rapid, scalable manufacturing of printed electronics, demonstrating decent printing resolution (2.5% variation), ≈30000 S m-1 conductivity and mechanical robustness. Incorporation of MXene-reduced palladium nanoparticles (MXene@PdNPs) facilitates 1.16% ethylene response at 1 ppm with 0.084 ppm limit of detection. The wireless sensor tags are attached on plant organ surfaces for in situ and continuously profiling of plant ethylene emission to inform the key transition of plant biochemistry, potentially extending the application of printed MXene electronics to enable real-time plant hormone monitoring for precision agriculture and food industrial management.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rujing Sun
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan He
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Qingmei Chen
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanli Lu
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
16
|
Guo R, Hu D, Liu D, Jiang Q, Qiu J. MXene nanomaterials in biomedicine: A bibliometric perspective. Front Bioeng Biotechnol 2023; 11:1184275. [PMID: 37152656 PMCID: PMC10154466 DOI: 10.3389/fbioe.2023.1184275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots. Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011-2022. The bibliometric records were obtained from the Web of Science Core Collection. Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots. Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application.
Collapse
Affiliation(s)
- Runying Guo
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Daorun Hu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Danrui Liu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Qingkun Jiang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxuan Qiu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|