1
|
Ding M, Yang Y, Sun N, He Y, Dong Z, Gao Q, Tian B. Catalytic hairpin assembly-and-cyclization aptasensing for AND-logic detection of protein- and RNA-targets in ribonucleoprotein. Biosens Bioelectron 2025; 279:117388. [PMID: 40132285 DOI: 10.1016/j.bios.2025.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Both immunological and molecular diagnostics are essential in disease control. However, due to the different technical routes, existing diagnostic tools mainly focus on either immunological or molecular targets at a time, resulting in restricted information for assessment. Herein, we report a DNA operational amplifier circuit for AND-logic analysis of nucleoprotein and RNA of SARS-CoV-2 ribonucleoprotein. The operator is realized using an aptamer-hairpin probe and a padlock-hairpin probe for nucleoprotein- and ligase-catalyzed hairpin assembly-and-cyclization (CHAC). Given approximately 1000 nucleoproteins per virion in coronavirus, a rolling circle amplification (RCA)-based preamplifier is applied to adjust the input bias by converting the target sequence into an aptamer-hairpin input for CHAC. After CHAC, cyclized padlock-hairpin probes trigger another round of RCA as a post-operator amplifier, producing amplicon coils that aggregate detection probe-modified magnetic nanoparticles. These stepwise homogeneous reaction processes are conducted in a single tube for optomagnetic sensing, offering detection limits of 0.07 ng/mL and 1.5 fM for the protein and the molecular targets of SARS-CoV-2, respectively. The stability, specificity, and accuracy of the circuit are validated by testing serum samples, salmon sperm samples, biased inputs, and 33 clinical nasopharyngeal swab specimens, demonstrating the practicability of simultaneously analyzing immunological and molecular targets for accurate diagnostics.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Nan Sun
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yilong He
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, Xiangya School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
2
|
Milner PT, Kim D, Wilson C. Quantum-inspired logic for advanced Transcriptional Programming. Nucleic Acids Res 2025; 53:gkaf440. [PMID: 40396492 PMCID: PMC12093148 DOI: 10.1093/nar/gkaf440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
The tenets of intelligent biological systems are (i) scalable decision-making, (ii) inheritable memory, and (iii) communication. This study aims to increase the complexity of decision-making operations beyond standard Boolean logic, while minimizing the metabolic burden imposed on the chassis cell. To this end, we present a new platform technology for constructing genetic circuits with multiple OUTPUT gene control using fewer INPUTs relative to conventional genetic circuits. Inspired by principles from quantum computing, we engineered synthetic bidirectional promoters, regulated by synthetic transcription factors, to construct 1-INPUT, 2-OUTPUT logical operations-i.e. biological QUBIT and PAULI-X logic gates-designed as compressed genetic circuits. We then layered said gates to engineer additional quantum-inspired logical operations of increasing complexity-e.g. FEYNMAN and TOFFOLI gates. In addition, we engineered a 2-INPUT, 4-OUTPUT quantum operation to showcase the capacity to utilize the entire permutation INPUT space. Finally, we developed a recombinase-based memory operation to remap the truth table between two disparate logic gates-i.e. converting a QUBIT operation to an antithetical PAULI-X operation in situ. This study introduces a novel and versatile synthetic biology toolkit, which expands the biocomputing capacity of Transcriptional Programming via the development of compressed and scalable multi-INPUT/OUTPUT logical operations.
Collapse
Affiliation(s)
- Prasaad T Milner
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, United States
| | - Dowan Kim
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, United States
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, United States
| |
Collapse
|
3
|
Gao Z, Pu Q, Li D, Zhang R, Lai X, Zhao X, Qiao B, Pei H, Peng Y, Wang H, Wu Q. One-step strand displacement-mediated nucleic acids signal-amplified analytical strategy based on superparamagnetism-functionalized DNA arrays. Int J Biol Macromol 2025; 308:142596. [PMID: 40158590 DOI: 10.1016/j.ijbiomac.2025.142596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
DNA nanostructure, as polymeric material with remarkable molecular recognition property, has been widely used in bioassay. However, it still faces some challenges to overcome complexity of signal-amplified strategies and to realize efficient separation of reaction products. Herein, we present an innovative signal-amplified approach by integrating the toehold-mediated strand displacement reaction with DNA tile self-assembly technology to construct superparamagnetism-functionalized DNA polymeric materials, establishing a new signal-amplified analytical strategy for nucleic acids. This strategy enables highly sensitive, rapid, and efficient nucleic acid detection, making it a promising candidate for point-of-care testing (POCT). The analytical performance of this strategy was validated using target DNA (tDNA) and PIWI-interacting RNA-36026 (piRNA-36026), achieving limits of detection (LOD) of 2.4 × 10-10 M and 2.7 × 10-10 M. Moreover, it successfully detected single-base mutations and demonstrated stability over seven days. Comparative experiments confirmed the superior signal-amplified efficiency of DNA arrays. Recovery experiments yielded recoveries of 88.53 %-101.89 % for tDNA and 87.58 %-108.61 % for piRNA-36026. Ultimately, the feasibility of this strategy for real-world applications was validated through detecting piRNA-36026 in cell lysates. In conclusion, this work introduces an innovative and efficient signal-amplified method, while expanding the application prospects of multifunctional DNA polymeric materials in biomedical diagnostics.
Collapse
Affiliation(s)
- Zhijun Gao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Dongxia Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Xuan Zhao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Bin Qiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Hua Pei
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Yanan Peng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Hua Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| |
Collapse
|
4
|
Pan J, Zeng Y, Wang Y, Ren X, Yang F, Chen J. Logic Circuits for Intelligent Microcystin Monitoring Based on Aptamer Recognition and Toehold-Mediated Hairpin DNA Self-Assembly. Anal Chem 2025; 97:2556-2565. [PMID: 39824752 DOI: 10.1021/acs.analchem.4c06655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ. The MC-LR and H1 binding will activate the H2 and H3 self-assemblies through toehold-mediated strand displacement. In the formed products (MC-LR/H1/nH2/nH3), FAM and BHQ will be separated and a high FAM fluorescence signal can be observed for the MC-LR assay. The biosensor is sensitive with a detection limit of 53 fM. We further constructed several logic circuits (AND-AND cascaded circuit, feedforward circuit, and resource allocation circuit) using MC-LR, MC-LA, and MC-YR as the three inputs. The numbers 0 and 1 are used to code the input and output signals. The AND-AND cascade circuit can produce a high output signal only in the (111) input combination. In the feedforward circuit, MC-LR and MC-LA can activate the logic circuit to produce high signals, and MC-YR will inhibit the self-assembly and execute the negative feedforward operation. Through the rational design of the DNA probe hybridizations on four different magnetic beads (MBs), the resource allocation circuit can achieve an intelligent allocation of input information. Our proposed fluorescence biosensor can not only provide a sensitive platform for microcystin detection but also serve as a smart and intelligent logic system for microcystin sensing.
Collapse
Affiliation(s)
- Jiafeng Pan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Zeng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuyan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junhua Chen
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Sedgwick R, Goertz JP, Stevens MM, Misener R, van der Wilk M. Transfer learning Bayesian optimization for competitor DNA molecule design for use in diagnostic assays. Biotechnol Bioeng 2025; 122:189-210. [PMID: 39412958 PMCID: PMC11632174 DOI: 10.1002/bit.28854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
With the rise in engineered biomolecular devices, there is an increased need for tailor-made biological sequences. Often, many similar biological sequences need to be made for a specific application meaning numerous, sometimes prohibitively expensive, lab experiments are necessary for their optimization. This paper presents a transfer learning design of experiments workflow to make this development feasible. By combining a transfer learning surrogate model with Bayesian optimization, we show how the total number of experiments can be reduced by sharing information between optimization tasks. We demonstrate the reduction in the number of experiments using data from the development of DNA competitors for use in an amplification-based diagnostic assay. We use cross-validation to compare the predictive accuracy of different transfer learning models, and then compare the performance of the models for both single objective and penalized optimization tasks.
Collapse
Affiliation(s)
- Ruby Sedgwick
- Department of Materials, Department of Bioengineering and Institute of Biomedical EngineeringImperial College LondonLondon
- Department of ComputingImperial College LondonLondon
| | - John P. Goertz
- Department of Materials, Department of Bioengineering and Institute of Biomedical EngineeringImperial College LondonLondon
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical EngineeringImperial College LondonLondon
- Department of Physiology, Anatomy and Genetics, Department of Engineering ScienceKavli Institute for Nanoscience Discovery, University of OxfordOxfordUK
| | - Ruth Misener
- Department of ComputingImperial College LondonLondon
| | - Mark van der Wilk
- Department of ComputingImperial College LondonLondon
- Department of Computer ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Sedgwick R, Goertz JP, Stevens MM, Misener R, van der Wilk M. Transfer Learning Bayesian Optimization to Design Competitor DNA Molecules for Use in Diagnostic Assays. ARXIV 2024:arXiv:2402.17704v2. [PMID: 38463498 PMCID: PMC10925383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
With the rise in engineered biomolecular devices, there is an increased need for tailor-made biological sequences. Often, many similar biological sequences need to be made for a specific application meaning numerous, sometimes prohibitively expensive, lab experiments are necessary for their optimization. This paper presents a transfer learning design of experiments workflow to make this development feasible. By combining a transfer learning surrogate model with Bayesian optimization, we show how the total number of experiments can be reduced by sharing information between optimization tasks. We demonstrate the reduction in the number of experiments using data from the development of DNA competitors for use in an amplification-based diagnostic assay. We use cross-validation to compare the predictive accuracy of different transfer learning models, and then compare the performance of the models for both single objective and penalized optimization tasks.
Collapse
Affiliation(s)
- Ruby Sedgwick
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London
- Department of Computing, Imperial College London, London
| | - John P Goertz
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford
| | - Ruth Misener
- Department of Computing, Imperial College London, London
| | | |
Collapse
|
7
|
Dong Y, Guo C, Wang J, Ye C, Min Q. Recent Advances in DNA Nanotechnology-Based Sensing Platforms for Rapid Virus Detection. Chembiochem 2024; 25:e202400230. [PMID: 38825565 DOI: 10.1002/cbic.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments. The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jialing Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Liu Y, Zhai Y, Hu H, Liao Y, Liu H, Liu X, He J, Wang L, Wang H, Li L, Zhou X, Xiao X. Erasable and Field Programmable DNA Circuits Based on Configurable Logic Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400011. [PMID: 38698560 PMCID: PMC11234411 DOI: 10.1002/advs.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/09/2024] [Indexed: 05/05/2024]
Abstract
DNA is commonly employed as a substrate for the building of artificial logic networks due to its excellent biocompatibility and programmability. Till now, DNA logic circuits are rapidly evolving to accomplish advanced operations. Nonetheless, nowadays, most DNA circuits remain to be disposable and lack of field programmability and thereby limits their practicability. Herein, inspired by the Configurable Logic Block (CLB), the CLB-based erasable field-programmable DNA circuit that uses clip strands as its operation-controlling signals is presented. It enables users to realize diverse functions with limited hardware. CLB-based basic logic gates (OR and AND) are first constructed and demonstrated their erasability and field programmability. Furthermore, by adding the appropriate operation-controlling strands, multiple rounds of programming are achieved among five different logic operations on a two-layer circuit. Subsequently, a circuit is successfully built to implement two fundamental binary calculators: half-adder and half-subtractor, proving that the design can imitate silicon-based binary circuits. Finally, a comprehensive CLB-based circuit is built that enables multiple rounds of switch among seven different logic operations including half-adding and half-subtracting. Overall, the CLB-based erasable field-programmable circuit immensely enhances their practicability. It is believed that design can be widely used in DNA logic networks due to its efficiency and convenience.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuxuan Zhai
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hao Hu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuheng Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huan Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiao Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiachen He
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Limei Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hongxun Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Longjie Li
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000China
| | - Xianjin Xiao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
9
|
Chen J, Wang X, Lv Y, Chen M, Tong H, Liu C. Intelligent monitoring of the available lead (Pb) and cadmium (Cd) in soil samples based on half adder and half subtractor molecular logic gates. Talanta 2024; 271:125681. [PMID: 38244307 DOI: 10.1016/j.talanta.2024.125681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The available heavy metals in soil samples can cause the direct toxicity on ecosystems, plants, and human health. Traditional chemical extraction and recombinant bacterial methods for the available heavy metals assay often suffer from inaccuracy and poor specificity. In this work, we construct half adder and half subtractor molecular logic gates with molecular-level biocomputation capabilities for the intelligent sensing of the available lead (Pb) and cadmium (Cd). The available Pb and Cd can cleave DNAzyme sequences to release the trigger DNA, which can activate the hairpin probe assembly in the logic system. This multifunctional logic system can not only achieve the intelligent recognition of the available Pb and Cd according to the truth tables, but also can realize the simultaneous quantification with high sensitivity, with the detection limits of 2.8 pM and 25.6 pM, respectively. The logic biosensor is robust and has been applied to determination of the available Pb and Cd in soil samples with good accuracy and reliability. The relative error (Re) between the logic biosensor and the DTPA + ICP-MS method was from -8.1 % to 7.9 %. With the advantages of programmability, scalability, and multicomputing capacity, the molecular logic system can provide a simple, rapid, and smart method for intelligent monitoring of the available Pb and Cd in environmental samples.
Collapse
Affiliation(s)
- Junhua Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yiwen Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
10
|
Zhu C, Pang S, Liu J, Duan Q. Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines. Drugs 2024; 84:403-423. [PMID: 38652356 DOI: 10.1007/s40265-024-02013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.
Collapse
Affiliation(s)
- Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Shengmei Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiaqi Liu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qiangde Duan
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Ding M, Xiao X, Yang Y, Yao Z, Dong Z, Gao Q, Tian B. AND-Logic Cascade Rolling Circle Amplification for Optomagnetic Detection of Dual Target SARS-CoV-2 Sequences. Anal Chem 2024; 96:455-462. [PMID: 38123506 DOI: 10.1021/acs.analchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
12
|
Liu H, Ming Z, Zhang Y, Xia Q, Hu H, Liu R, Liao Y, Liu Y, Liu X, Zhang X, Li L, Wang S, Xiao X. Triplex-structure based DNA circuits with ultra-low leakage and high signal-to-noise ratio. CHINESE CHEM LETT 2024; 35:108555. [DOI: 10.1016/j.cclet.2023.108555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
13
|
Han J, Lv X, Zhang Y, Wang J, Fan D, Dong S. Toward Minute-Level DNA Computing: An Ultrafast, Cost-Effective, and Universal System for Lighting Up Various Concurrent DNA Logic Nanodevices (CDLNs) and Concatenated Circuits. Anal Chem 2023; 95:16725-16732. [PMID: 37906527 DOI: 10.1021/acs.analchem.3c03793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
DNA logic nanodevices are powerful tools for both molecular computing tasks and smart bioanalytical applications. Nevertheless, the hour-level operation time and high cost caused by the frequent redesign/reconstruction of gates, tedious strand-displacement reaction, and expensive labeled probes (or tool enzymes) in previous works are ineluctable drawbacks. Herein, we report an ultrafast and cost-effective system for engineering concurrent DNA logic nanodevices (CDLNs) by combining polythymine CuNCs with SYBR Green I (SG I) as universal dual-output producers. Particularly, benefiting from the concomitant minute-level quick response of both unlabeled illuminators and the exquisite strand-displacement-free design, all CDLNs including contrary logic pairs (YES∧NOT, OR∧NOR, and Even∧Odd number classifier), noncontrary ones (IDE∧IMP, OR∧NAND), and concatenated circuits are implemented in just 10 min via a "one-stone-two-birds" method, resulting in only 1/12 the operation time and 1/4 the cost needed in previous works, respectively. Moreover, all of them share the same threshold value, and the dual output can be easily visualized by the naked eye under a portable UV lamp, indicating the universality and practicality of this system. Furthermore, by exploiting the "positive/negative cross-verification" advantages of concurrent contrary logic, the smart in vitro analysis of the polyadenine strand and its polymerase is realized, providing novel molecular tools for the early diagnosis of cancer-related diseases.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|