1
|
Zhu M, Zhang H, Zhang S, Yao H, Shi X, Xu S. Chemoresistive Gas Sensors Based on Noble-Metal-Decorated Metal Oxide Semiconductors for H 2 Detection. MATERIALS (BASEL, SWITZERLAND) 2025; 18:451. [PMID: 39859922 PMCID: PMC11767018 DOI: 10.3390/ma18020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Hydrogen has emerged as a prominent candidate for future energy sources, garnering considerable attention. Given its explosive nature, the efficient detection of hydrogen (H2) in the environment using H2 sensors is paramount. Chemoresistive H2 sensors, particularly those based on noble-metal-decorated metal oxide semiconductors (MOSs), have been extensively researched owing to their high responsiveness, low detection limits, and other favorable characteristics. Despite numerous recent studies and reviews reporting advancements in this field, a comprehensive review focusing on the rational design of sensing materials to enhance the overall performance of chemoresistive H2 sensors based on noble-metal-decorated MOFs is lacking. This review aims to address this gap by examining the principles, applications, and challenges of chemoresistive H2 sensors, with a specific focus on Pd-decorated and Pt-decorated MOSs-based sensing materials. The observations and explanations of strategies employed in the literature, particularly within the last three years, have been analyzed to provide insights into the latest research directions and developments in this domain. This understanding is essential for designing and fabricating highly efficient H2 sensors.
Collapse
Affiliation(s)
| | | | | | | | - Xuerong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| |
Collapse
|
2
|
Quezada D, Herrera B, Santibáñez R, Palma JL, Landaeta E, Álvarez CA, Valenzuela S, Cobos-Montes K, Ramírez D, Santana PA, Ahumada M. Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface. BIOSENSORS 2024; 14:592. [PMID: 39727857 DOI: 10.3390/bios14120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer. To this end, an impedimetric detector was developed based on a graphite electrode surface modified with an ACE2 peptide-mimic. This sensor enables accurate quantification of recombinant 2019-nCoV spike RBD protein (used as a model analyte) within a linear detection range of 0.167-0.994 ng mL-1, providing a reliable method for detecting SARS-CoV-2. The observed sensitivity was further demonstrated by molecular dynamics that established the high affinity and specificity of the peptide to the protein. Unlike other impedimetric sensors, the herein presented system can detect impedance in a single frequency, allowing a measure as fast as 3 min to complete the analysis and achieving a detection limit of 45.08 pg mL-1. Thus, the proposed peptide-based electrochemical biosensor offers fast results with adequate sensitivity, opening a path to new developments concerning other viruses of interest.
Collapse
Affiliation(s)
- Diego Quezada
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Beatriz Herrera
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Rodrigo Santibáñez
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Juan Luis Palma
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Esteban Landaeta
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
| | - Claudio A Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo 1781421, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Kevin Cobos-Montes
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
3
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
4
|
Yamazaki Y, Hitomi T, Homma C, Rungreungthanapol T, Tanaka M, Yamada K, Hamasaki H, Sugizaki Y, Isobayashi A, Tomizawa H, Okochi M, Hayamizu Y. Enantioselective Detection of Gaseous Odorants with Peptide-Graphene Sensors Operating in Humid Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18564-18573. [PMID: 38567738 DOI: 10.1021/acsami.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tatsuru Hitomi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Kou Yamada
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hiroshi Hamasaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Deng H, Nakamoto T. Biosensors for Odor Detection: A Review. BIOSENSORS 2023; 13:1000. [PMID: 38131760 PMCID: PMC10741685 DOI: 10.3390/bios13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Animals can easily detect hundreds of thousands of odors in the environment with high sensitivity and selectivity. With the progress of biological olfactory research, scientists have extracted multiple biomaterials and integrated them with different transducers thus generating numerous biosensors. Those biosensors inherit the sensing ability of living organisms and present excellent detection performance. In this paper, we mainly introduce odor biosensors based on substances from animal olfactory systems. Several instances of organ/tissue-based, cell-based, and protein-based biosensors are described and compared. Furthermore, we list some other biological materials such as peptide, nanovesicle, enzyme, and aptamer that are also utilized in odor biosensors. In addition, we illustrate the further developments of odor biosensors.
Collapse
Affiliation(s)
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama 226-8503, Kanagawa, Japan;
| |
Collapse
|