1
|
Dong Y, Sun L, Guo Y, Xu J, Jin Z, Wang Z, Zhang W, Xia Y, Huang H, Xia X, Zhang J. Multifunctional Janus-Coated Metafabric for Personal Thermal Comfort and Energy Efficient Buildings. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39994004 DOI: 10.1021/acsami.4c19875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Space cooling and heating consume huge energy resources globally, while existing cooling/heating equipment can only address indoor temperature control. In this work, we report a multifunctional layered Janus-coated fabric (JCF) with radiative cooling/solar heating/Joule heating, which can utilize space and the sun as a source of cooling and heating. By adjusting the reflectivity, emissivity, and absorptivity of the coating, the fabric performs a thermal management function in a complex and changeable environment without consuming energy. In cooling mode, the cooling layer achieves a high solar reflectivity of 96% and an infrared emissivity of 96%, resulting in a 3.1 °C reduction in ambient temperature without any convective shielding. In addition, it reduces temperatures by 1.6 °C on human arms and by 5.1 °C inside houses, respectively. In the heating mode, the heating layer demonstrates excellent light-to-heat conversion efficiency under direct sunlight, achieving a 13.3 °C radiation warming ability, 16 °C heating effect on the surface of the arm, and a 12.8 °C temperature increase in the house. Furthermore, when switched to active heating for temperature regulation, JCF exhibits fast electrical response, high-efficiency electrical heat conversion capability, and stable electrical heat circulation capability. Building energy simulations indicate that widespread deployment of JCF across China could lead to a reduction in cooling and heating energy consumption by more than 25 MJ/m2 in 80% of cities. This multifunctional Janus-coated fabric not only provides a viable engineering path for the practical application of radiative heat management technology but also demonstrates its potential applications in human thermal comfort, smart wearable and building energy efficiency.
Collapse
Affiliation(s)
- Yiqi Dong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lindai Sun
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Guo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianping Xu
- Evercos Battery Co. Ltd., Suichang 323300, China
| | - Zheyu Jin
- Evercos Battery Co. Ltd., Suichang 323300, China
| | | | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinhui Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Ding YC, Tang GW, Zhao HY, Liu JM, Fan TH, Peng YC, Ker PJ, Geng DS. Scalable, Flexible, and UV-Resistant Bacterial Cellulose Composite Film for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6857-6866. [PMID: 39834073 DOI: 10.1021/acsami.4c22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm). Predominantly, synthetic polymers are effectively utilized for radiative cooling while posing potential environmental hazards due to their complex components, toxicity, or nonbiodegradation. Bacterial cellulose, a natural and renewable biopolymer, stands out due to its environmentally friendly, scalability, high purity, and significant infrared emissivity. In this work, we developed a bacterial cellulose-based composite film (BCF) with a cross-linked network structure by a facile agitation spraying method to achieve enhanced and sustainable radiative cooling performance. The BCF exhibited superior optical properties and environmental tolerance, with a notable infrared emissivity of 94.6%. As a result, the thermal emitter demonstrates a substantial subambient cooling capacity (11:00 to 13:00, maximum drop of 7.15 °C, average drop of 4.85 °C; 22:00 to 2:00, maximum drop of 2.7 °C, average drop of 2.32 °C). Additionally, the BCF maintained stable emissivity after 240 h of continuous UV irradiation. Furthermore, BCF can effectively preserve the freshness of fruits under intense solar irradiation. Hence, BCF with high radiative cooling performance presents a broad application prospect in building energy conservation, solar cells efficiency enhancement, and food transportation packaging.
Collapse
Affiliation(s)
- Yuan-Cheng Ding
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
| | - Guo-Wei Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hao-Yu Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
| | - Jia-Ming Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
| | - Tian-Hao Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
| | - Yu-Can Peng
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Pin Jern Ker
- School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Dong-Sheng Geng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
3
|
Du P, Zhao X, Zhan X, Li X, Hou K, Ji Y, Fan Z, Muhammad J, Ge F, Cai Z. A High-Performance Passive Radiative Cooling Metafabric with Janus Wettability and Thermal Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403751. [PMID: 38940499 DOI: 10.1002/smll.202403751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Indexed: 06/29/2024]
Abstract
With the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat-related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy. The metafabric presents excellent solar reflectivity (99.7%, 0.3-2.5 µm) and selective infrared radiation (92.4%, 8-13 µm), given that the unique optical nature of materials and wettability gradient/micro-nano hierarchical structure design. The strong moisture-wicking effect (water vapor transmission (WVT) of 2985 g m-2 d-1 and directional water transport index (R) of 1029.8%) and high heat-conduction capacity can synergistically enhance the radiative cooling efficiency of the metafabric. The outdoor experiment reveals that the metafabric can obtain cooling temperatures of 13.8 °C and 19.3 °C in the dry and sweating state, respectively. Meanwhile, the metafabric saves ≈19.3% of annual energy consumption compared with the buildings with HAVC systems in Shanghai. The metafabric also demonstrates desirable breathability, mechanical strength, and washability. The cost-effective and high-performance metafabric may offer a novel avenue for developing next-generation personal cooling textiles.
Collapse
Affiliation(s)
- Peibo Du
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xingshun Zhao
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xiongwei Zhan
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Xiaoyan Li
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Keru Hou
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Yating Ji
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zhuizhui Fan
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Javed Muhammad
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fengyan Ge
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zaisheng Cai
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Wang G, Ryu K, Dong Z, Hu Y, Ke Y, Dong Z, Long Y. Micro/nanofabrication of heat management materials for energy-efficient building facades. MICROSYSTEMS & NANOENGINEERING 2024; 10:115. [PMID: 39183234 PMCID: PMC11345463 DOI: 10.1038/s41378-024-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 08/27/2024]
Abstract
Advanced building facades, which include windows, walls, and roofs, hold great promise for reducing building energy consumption. In recent decades, the management of heat transfer via electromagnetic radiation between buildings and outdoor environments has emerged as a critical research field aimed at regulating solar irradiation and thermal emission properties. Rapid advancements have led to the widespread utilization of advanced micro/nanofabrication techniques. This review provides the first comprehensive summary of fabrication methods for heat management materials with potential applications in energy-efficient building facades, with a particular emphasis on recent developments in fabrication processing and material property design. These methods include coating, vapor deposition, nanolithography, printing, etching, and electrospinning. Furthermore, we present our perspectives regarding their advantages and disadvantages and our opinions on the opportunities and challenges in this field. This review is expected to expedite future research by providing information on the selection, design, improvement, and development of relevant fabrication techniques for advanced materials with energy-efficient heat management capabilities.
Collapse
Affiliation(s)
- Guanya Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Keunhyuk Ryu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
- School of Interdisciplinary Studies, Lingnan University, Tuen Mun, New Territories, 999077, Hong Kong SAR, China.
| | - ZhiLi Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China.
| |
Collapse
|
5
|
Li C, Duan Y, Wang S, Wang S, Yu D, Wang L, Wang Y, Wu M. Hierarchical Porous Fibers for Intrinsically Thermally Insulated and Self-Sensing Integrated Smart Textile. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14124-14132. [PMID: 38450639 DOI: 10.1021/acsami.3c18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Here, stretchable hierarchical porous polyurethane fibers were designed, fabricated, and employed as a three-dimensional hierarchical interconnected framework for conductive networks interwoven with silver nanoparticles and carbon nanotubes. The fiber possessed favorable thermal insulation, strain sensing, and electric heating properties. The core-shell layered porous structure of fiber made the fiber have high heat insulation performance (the difference value of temperature |ΔT| = 3.54, 8.9, and 12.7 °C at heating stage temperatures of 35, 50, and 65 °C) and ultrahigh elongation at break (813%). Importantly, after conductive filler decoration, the fiber could exhibit real-time strain-sensing capacities with a high gauge factor. In addition, the fibers could be heated at low voltage, like an electrical heater. The development of flexible, stretchable, and multifunctional porous fibers had great potential applications in intelligent wearable devices for integrated thermal management, strain sensing, and intrinsic self-warming capability.
Collapse
Affiliation(s)
- Chao Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yinhe Duan
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Shiwen Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Shanli Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yijia Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
6
|
Li T, Chen X, Fu Y, Liao C. Colorimetric sweat analysis using wearable hydrogel patch sensors for detection of chloride and glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5855-5866. [PMID: 37888873 DOI: 10.1039/d3ay01738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Sweat is a promising non-invasive biofluid that can provide valuable insights into the physiological state of the human body. However, a major obstacle to analyzing sweat in real-time is the fabrication of simple, fast-acting, accurate, and low-cost sensing constructs. To address this challenge, we introduced easily-prepared wearable hydrogel sensors that can be placed on the skin and used colorimetric techniques to assess sweat analytes without invasive procedures. Two typical sweat sensors, chloride ion (Cl-) responsive patches for cystic fibrosis (CF) analysis and glucose response patches for diabetic monitoring, were demonstrated for real sample analysis. The Cl- colorimetric sensor, with a detection limit down to 100 μM, shows a good linear response from 1.56 mM to 200 mM Cl-, and the glucose colorimetric sensor, with a detection limit down to 1 μM, exhibits an adequate linear response from 10 μM to 1 mM glucose. These colorimetric hydrogel sensors are also incorporated into a medical dressing to create wearable sensor devices for real-time sweat analysis. The acquired readings closely match the results obtained from the benchmark analyzing instrument, with a small deviation of less than 10%. Therefore, our simple colorimetric hydrogel sensing patches hold great potential to advance real-time sweat testing and contribute to the transitional development of wearable medical devices.
Collapse
Affiliation(s)
- Tuqiang Li
- Creative Biosciences (Guangzhou) Co., Ltd, Guangzhou, PR China.
| | - Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - Caizhi Liao
- Creative Biosciences (Guangzhou) Co., Ltd, Guangzhou, PR China.
| |
Collapse
|
7
|
Li SN, You Y, Liu B, Jiang XY, Yu JG. Ingenious fabrication of bamboo leaf-like ferric vanadate intertwined multi-walled carbon nanotubes nanocomposite as a sensitive sensor for determination of uric acid in fetal bovine serum. Mikrochim Acta 2023; 190:439. [PMID: 37845383 DOI: 10.1007/s00604-023-06019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
A novel nanocomposite material, ferric vanadate intertwined multi-walled carbon nanotubes (FeV/MWCNTs), has been designed which was drop-coated onto a glassy carbon electrode (GCE). The constructed sensor was used for the sensitive determination of uric acid (UA) in fetal bovine serum (FBS) and human serum (HS). A series of characterization and electrochemical tests showed that the ultrasound-assisted assembly of FeV with MWCNTs not only overcame the disadvantages of low conductivity and easy (unwanted) aggregation, but also avoided the decrease in effective surface area due to the severe aggregation of each individual raw material. The fabricated FeV/MWCNTs nanocomposites exhibited higher conductivity, larger effective surface area, and better electrocatalytic activity. In addition, under optimized conditions, the developed electrochemical sensor FeV/MWCNTs/GCE has a lower limit of detection (LOD, 0.05 µM; Ep = 0.268 V vs. Ag/AgCl) and wider linear range (0.20-100 µM), which can satisfy the criteria of trace UA detection. The results of UA determination in FBS (recovery = 95.5-103%; RSD ≤ 3.1%) and HS (recovery = 95.5-103%; RSD ≤ 4.3%) further validated the feasibility of FeV/MWCNTs-based electrochemical sensors for the determination of UA in biological fluids.
Collapse
Affiliation(s)
- Shuang-Ning Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ya You
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Bo Liu
- Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu, 610300, Sichuan, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|