1
|
Li M, Wang R, Lei P, Ma D, Shuang S, Dong C, Zhang L. Observation of polarity changes in Sjogren's syndrome mice using a targeting lysosomes and ratiometric fluorescent probe. Talanta 2024; 280:126787. [PMID: 39213887 DOI: 10.1016/j.talanta.2024.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Utilizing non-invasive, real-time dynamic imaging and high-resolution detection tools to track polarity changes in Sjögren's syndrome (SS) contributes to a better understanding of the disease progression. Herein, a ratiometric polarity-sensitive fluorescent probe (DIM) was designed and synthesized, DIM consisted of dicyanoisophorone as the fluorophore and morpholine moiety as lysosome targeting. DIM showed a ratiometric response to polarity and high selectivity (unaffected by viscosity, pH, ROS, RNS, etc.), offering a more accurate analysis of intracellular polarity through a built-in internal reference calibration. The polarity abnormality of submandibular glands in non-obese diabetic (NOD) mice was revealed and verified by in vivo ratiometric fluorescence imaging of DIM, suggesting that fluorescent probe have great potential in the diagnosis of salivary gland abnormalities.
Collapse
Affiliation(s)
- Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases(Rheumatic Diseases), Taiyuan, 030032, China.
| | - Ruifang Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases(Rheumatic Diseases), Taiyuan, 030032, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Dan Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases(Rheumatic Diseases), Taiyuan, 030032, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases(Rheumatic Diseases), Taiyuan, 030032, China.
| |
Collapse
|
2
|
Zhou R, Liu G, Fu S, Zheng H, Li D, Dai J, Wei J, Li B, Wang C, Lu G. Labeling selectivity of lipid droplets fluorescent probes: Twisted intramolecular charge transfer (TICT) vs intramolecular charge transfer (ICT). Biosens Bioelectron 2024; 264:116624. [PMID: 39121616 DOI: 10.1016/j.bios.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Fluorescence imaging technology is a versatile and essential tool in the field of biomedical research. To obtain excellent imaging results, the precise labeling of fluorescent probes is an important prerequisite. Nevertheless, the labeling selectivity of most fluorescent probes is not satisfactory, new design concepts are desperately needed. In this context, two isomeric lipid droplets (LDs) fluorescent probes Lipi-Cz-1 and Lipi-Cz-2 have been sophisticatedly developed with TICT and ICT-emitting characteristic, respectively. The more environmentally sensitive TICT-emitting Lipi-Cz-1 exhibits a significantly enhanced labeling selectivity in LDs imaging compared to the ICT-emitting Lipi-Cz-2, sufficiently illustrating the effectiveness of TICT-emitting characteristic in improving labeling selectivity. Additionally, Lipi-Cz-1 displays high photostability and biocompatibility. These advantages enable Lipi-Cz-1 to be finely applied in multimode fluorescence imaging, e.g. time-lapse 3D confocal imaging to monitor changes of the number and size of LDs during starvation, two-photon 3D imaging to compare the variations of LDs in various liver tissues, and STED super-resolution imaging to visualize the nanoscale LDs with the resolution of 65 nm. Overall, these imaging findings validate the effectiveness of the new strategy for improving the labeling selectivity.
Collapse
Affiliation(s)
- Ri Zhou
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China; State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shengjie Fu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Jinbei Wei
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Bai Li
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Liang T, Liu S, Chen X, Tian M, Wu C, Sun X, Zhong K, Li Y, Qiang T, Hu W, Tang L. Visualizing the crucial roles of plasma membrane and peroxynitrite during abdominal aortic aneurysm using two-photon fluorescence imaging. Talanta 2024; 274:126120. [PMID: 38640603 DOI: 10.1016/j.talanta.2024.126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Peroxynitrite (ONOO-) and cell plasma membrane (CPM) are two key factors in cell pyroptosis during the progression of abdominal aortic aneurysm (AAA). However, their combined temporal and spatial roles in initiating AAA pathogenesis remain unclear. Herein, we developed a two-photon fluorescence probe, BH-Vis, enabling real-time dynamic detection of CPM and ONOO- changes, and revealing their interplay in AAA. BH-Vis precisely targets CPM with reduced red fluorescence intensity correlating with diminished CPM tension. Concurrently, a blue shift of the fluorescence signal of BH-Vis occurs in response to ONOO- offering a reliable ratiometric detection mode with enhanced accuracy by minimizing external testing variables. More importantly, two photon confocal imaging with palmitic acid (PA) and ganglioside (GM1) manipulation, which modulating cell pyroptosis, showcases reliable fluorescence fluctuations. This groundbreaking application of BH-Vis in a mouse AAA model demonstrates its significant potential for accurately identifying cell pyroptosis levels during AAA development.
Collapse
Affiliation(s)
- Tianyu Liang
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuling Liu
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Xinyu Chen
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Chengyan Wu
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Yang Li
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Taotao Qiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Wei Hu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Lijun Tang
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|