1
|
Zhou H, Cai Y, He L, Li T, Wang Z, Li L, Hu T, Li X, Zhuang L, Huang X, Li Y. Phase Transition of Wax Enabling CRISPR Diagnostics for Automatic At-Home Testing of Multiple Sexually Transmitted Infection Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407931. [PMID: 39498734 DOI: 10.1002/smll.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Sexually transmitted infections (STIs) significantly impact women's reproductive health. Rapid, sensitive, and affordable detection of these pathogens is essential, especially for home-based self-testing, which is crucial for individuals who prioritize privacy or live in areas with limited access to healthcare services. Herein, an automated diagnostic system called Wax-CRISPR has been designed specifically for at-home testing of multiple STIs. This system employs a unique strategy by using the solid-to-liquid phase transition of wax to sequentially isolate and mix recombinase polymerase amplification (RPA) and CRISPR assays in a microfluidic chip. By incorporating a home-built controlling system, Wax-CRISPR achieves true one-pot multiplexed detection. The system can simultaneously detect six common critical gynecological pathogens (CT, MG, UU, NG, HPV 16, and HPV 18) within 30 min, with a detection limit reaching 10-18 M. Clinical evaluation demonstrates that the system achieves a sensitivity of 96.8% and a specificity of 97.3% across 100 clinical samples. Importantly, eight randomly recruited untrained operators performe a double-blinded test and successfully identified the STI targets in 33 clinical samples. This wax-transition-based one-pot CRISPR assay offers advantages such as low-cost, high-stability, and user-friendliness, making it a useful platform for at-home or field-based testing of multiple pathogen infections.
Collapse
Affiliation(s)
- Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yixuan Cai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang He
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhijie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| |
Collapse
|
2
|
Tang C, Dong Z, Yan S, Liu B, Wang Z, Cheng L, Liu F, Sun H, Du Y, Pan L, Zhou Y, Jin Z, Zhao L, Wu N, Chang L, Xu X. Microdroplet-enhanced chip platform for high-throughput immunotherapy marker screening from extracellular vesicle RNAs and membrane proteins. Biosens Bioelectron 2025; 267:116748. [PMID: 39276441 DOI: 10.1016/j.bios.2024.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Extracellular vesicles (EVs) are considered as promising candidates for predicting patients who respond to immunotherapy. Nevertheless, simultaneous detection of multiple EVs markers still presents significant technical challenges. In this work, we developed a high-throughput microdroplet-enhanced chip (MEC) platform, which utilizes thousands of individual microchambers (∼pL) as reactors, accelerating the detection efficiency of the CRISPR/Cas systems and increasing the sensitivity by up to 100-fold (aM level). Ten biomarkers (including 5 RNAs and 5 proteins) from patients' EVs are successfully detected on one chip, and the comprehensive markers show increased accuracy (AUC 0.911) than the individual marker for the efficacy prediction of immunotherapy. This platform provides a high-throughput yet sensitive strategy for screening immunotherapy markers in clinical.
Collapse
Affiliation(s)
- Chuanhao Tang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China; Department of Medical Oncology, Peking University International Hospital, Beijing, 102206, China
| | - Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Shi Yan
- State Key Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- State Key Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Long Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Lu Pan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yuhao Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiyuan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Libo Zhao
- Echo Biotech Co., Ltd, Beijing, 102206, China
| | - Nan Wu
- State Key Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
3
|
Wang C, Yao S, Zhang T, Sun X, Bai C, Zhou P. RNA N6-Methyladenosine Modification in DNA Damage Response and Cancer Radiotherapy. Int J Mol Sci 2024; 25:2597. [PMID: 38473842 DOI: 10.3390/ijms25052597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The N6-methyladenosine (M6A) modification is the most common internal chemical modification of RNA molecules in eukaryotes. This modification can affect mRNA metabolism, regulate RNA transcription, nuclear export, splicing, degradation, and translation, and significantly impact various aspects of physiology and pathobiology. Radiotherapy is the most common method of tumor treatment. Different intrinsic cellular mechanisms affect the response of cells to ionizing radiation (IR) and the effectiveness of cancer radiotherapy. In this review, we summarize and discuss recent advances in understanding the roles and mechanisms of RNA M6A methylation in cellular responses to radiation-induced DNA damage and in determining the outcomes of cancer radiotherapy. Insights into RNA M6A methylation in radiation biology may facilitate the improvement of therapeutic strategies for cancer radiotherapy and radioprotection of normal tissues.
Collapse
Affiliation(s)
- Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shibo Yao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tinghui Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|