1
|
Tsou HK, Wu CH, Chan LY, Kataoka K, Itokazu N, Tsuzuki M, Hu H, Zhuo GY, Itaka K, Lin CY. Administration of mRNA-Nanomedicine-Augmented Calvarial Defect Healing via Endochondral Ossification. Pharmaceutics 2023; 15:1965. [PMID: 37514151 PMCID: PMC10383176 DOI: 10.3390/pharmaceutics15071965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Large-area craniofacial defects remain a challenge for orthopaedists, hastening the need to develop a facile and safe tissue engineering strategy; osteoconductive material and a combination of optimal growth factors and microenvironment should be considered. Faced with the unmet need, we propose that abundant cytokines and chemokines can be secreted from the bone defect, provoking the infiltration of endogenous stem cells to assist bone regeneration. We can provide a potent mRNA medicine cocktail to promptly initiate the formation of bone templates, osteogenesis, and subsequent bone matrix deposition via endochondral ossification, which may retard rapid fibroblast infiltration and prevent the formation of atrophic non-union. We explored the mutual interaction of BMP2 and TGFβ3 mRNA, both potent chondrogenic factors, on inducing endochondral ossification; examined the influence of in vitro the transcribed polyA tail length on mRNA stability; prepared mRNA nanomedicine using a PEGylated polyaspartamide block copolymer loaded in a gelatin sponge and grafted in a critical-sized calvarial defect; and evaluated bone regeneration using histological and μCT examination. The BMP2 and TGFβ3 composite mRNA nanomedicine resulted in over 10-fold new bone volume (BV) regeneration in 8 weeks than the BMP2 mRNA nanomedicine administration alone, demonstrating that the TGFβ3 mRNA nanomedicine synergistically enhances the bone's formation capability, which is induced by BMP2 mRNA nanomedicine. Our data demonstrated that mRNA-medicine-mediated endochondral ossification provides an alternative cell-free tissue engineering methodology for guiding craniofacial defect healing.
Collapse
Affiliation(s)
- Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 35664, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- College of Health, National Taichung University of Science and Technology, Taichung 40303, Taiwan
| | - Cheng-Hsin Wu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Long Yi Chan
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Nanae Itokazu
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan; (N.I.); (M.T.)
| | - Minoru Tsuzuki
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan; (N.I.); (M.T.)
| | - Hsuan Hu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterial and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan;
| | - Chin-Yu Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Zhdanov VP. Lipid nanoparticles with ionizable lipids: Statistical aspects. Phys Rev E 2022; 105:044405. [PMID: 35590555 DOI: 10.1103/physreve.105.044405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Lipid nanoparticles (LNPs) with size ∼100 nm are now used for fabrication of a new generation of drugs and antiviral vaccines. To optimize their function or, more specifically, interaction with cell membranes, their composition often includes ionizable lipids which are neutral or cationic (after association with H^{+}). Physically, such LNPs represent an interesting example of mesoscopic nanosystems with complex and far from understood properties. Experimentally, they can be studied at cell-membrane mimics. Herein, I analyze theoretically three related aspects. (i) I describe how the extent of protonation of ionizable lipids located at the surface of LNPs depends on the H^{+} concentration by using the phenomenological Langmuir-Stern and Poisson-Boltzmann models with continuum distribution of charges and the dipole model with discrete charges. In these frameworks, the H^{+} adsorption isotherms are predicted to be close to Langmuirian provided the fraction of ionizable lipids is smaller than 0.5. (ii) I scrutinize the interaction between charged LNPs and their interaction with a supported lipid bilayer (SLB) by using the phenomenological theory and lattice-gas model. The long-term association or attachment is predicted provided the charges are opposite. The models make it possible to estimate the size of the contact region (provided a LNP is not deformed) and the number of lipid-lipid bonds in this region. (iii) I briefly discuss denaturation of a LNP during interaction with the SLB and argue that it may occur via a few stepwise transitions.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Curr Opin Colloid Interface Sci 2021; 53:101450. [PMID: 36568530 PMCID: PMC9761319 DOI: 10.1016/j.cocis.2021.101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral infections occur at very different length and time scales and include various processes, which can often be described using the models developed and/or employed in colloid and interface science. Bearing in mind the currently active COVID-19, I discuss herein the models aimed at viral transmission via respiratory droplets and the contact of virions with the epithelium. In a more general context, I outline the models focused on penetration of virions via the cellular membrane, initial stage of viral genome replication, and formation of viral capsids in cells. In addition, the models related to a new generation of drug delivery vehicles, for example, lipid nanoparticles with size about 100-200 nm, are discussed as well. Despite the high current interest in all these processes, their understanding is still limited, and this area is open for new theoretical studies.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Gao W, Chen R, Xie N, Tang D, Zhou B, Wang D. Duloxetine-Induced Neural Cell Death and Promoted Neurite Outgrowth in N2a Cells. Neurotox Res 2020; 38:859-870. [PMID: 32415528 PMCID: PMC7591439 DOI: 10.1007/s12640-020-00216-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Abstract
Duloxetine is a clinical drug that is primarily used for treatment of depression and pain, but it has side effects of addiction and tolerance. Cytochrome P450 (CYP) is its metabolic enzyme, and the drug's biofunction results from its neuro-protective effect in animal and cell models. We aimed to investigate the duloxetine-induced neural cytotoxicity effect and its performance in an N2a cell neurite outgrowth model. Cell death was assessed as cell viability using a Cell Count Kit-8 and further evaluated using bright-field images, propidium iodide (PI) and annexin V staining, colony-formation analysis, TUNEL staining of the cells, and biochemical testing. N2a cells were committed to differentiation by serum withdrawal and RA induction, and the neurite outgrowth was evaluated as the number of differentiated cells, longest neurite length, and average neurite length. Cell cycle analysis, PI and annexin V staining, mRNA expression, and biochemical testing were used to evaluate the drug effects on differentiation. The induction of neural cell death by duloxetine was not affected by classic cell death inhibitors but was promoted by the CYP inducer rifampicin. N2a cell neurite outgrowth was promoted by duloxetine via reduction of the CYP2D6 and MDA levels and induction of Bdnf protein levels. Duloxetine induces neural cell death through effects on CYP and promotes N2a cell neurite outgrowth by regulating CYP, Bdnf protein, and the intracellular lipid peroxidation level.
Collapse
Affiliation(s)
- Wanli Gao
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China
| | - Rui Chen
- Department of Reproductive, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China
| | - Nan Xie
- Department of Oral Pathology, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Borong Zhou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China. .,Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China.
| | - Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China. .,Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510510, People's Republic of China.
| |
Collapse
|
5
|
Zhdanov VP. Intracellular RNA delivery by lipid nanoparticles: Diffusion, degradation, and release. Biosystems 2019; 185:104032. [PMID: 31563119 DOI: 10.1016/j.biosystems.2019.104032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Various RNAs (siRNAs, miRNAs, or mRNAs) can be delivered into cells by lipid nanoparticles (LNPs) of 50-150 nm in diameter. The subsequent RNA release from LNPs may occur via various scenarios. Herein, two related kinetic models are proposed. The first model takes into account that LNPs are often porous so that RNA molecules diffuse in and detach from nanopores. The analysis is focused on RNA diffusion from a pore. The analytical expression obtained for the RNA escape rate constant is used to identify the difference in the release of siRNAs, miRNAs, and mRNAs. The key message here is that the mRNA diffusion from pores appears to be too slow, and accordingly the mRNA release seems to occur primarily via degradation of LNPs. The second coarse-grained model describes the diffusion-mediated release of RNA from a LNP in the situation when this process is accompanied by the LNP degradation at the lipid-solution interface. The corresponding kinetics are shown in detail at different relative rates of the RNA diffusion and LNP degradation. Potentially, this can help to interpret drug plasma levels after various dosing regimens.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
6
|
Zhdanov VP. Slow relaxation during and after perturbation of bistable kinetics of gene expression. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:297-302. [PMID: 30903265 DOI: 10.1007/s00249-019-01358-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/27/2018] [Accepted: 03/09/2019] [Indexed: 01/09/2023]
Abstract
After a short perturbation of a bistable genetic network, it returns to its initial steady state or transits to another steady state. The time scale characterizing such transient regimes can be appreciably longer compared to those of the degradation of the perturbed mRNAs and proteins. The author shows in detail the specifics of this slowdown of the transient kinetics using mean-field kinetic equations and Monte Carlo simulations. Attention is focused on nanocarrier-mediated delivery and release of short non-coding RNA (e.g., miRNA or siRNA) into cells with subsequent suppression of the populations of the targeted mRNA and corresponding protein.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
7
|
Yasar H, Biehl A, De Rossi C, Koch M, Murgia X, Loretz B, Lehr CM. Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. J Nanobiotechnology 2018; 16:72. [PMID: 30231888 PMCID: PMC6145106 DOI: 10.1186/s12951-018-0401-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Messenger RNA (mRNA) has gained remarkable attention as an alternative to DNA-based therapies in biomedical research. A variety of biodegradable nanoparticles (NPs) has been developed including lipid-based and polymer-based systems for mRNA delivery. However, both systems still lack in achieving an efficient transfection rate and a detailed understanding of the mRNA transgene expression kinetics. Therefore, quantitative analysis of the time-dependent translation behavior would provide a better understanding of mRNA's transient nature and further aid the enhancement of appropriate carriers with the perspective to generate future precision nanomedicines with quick response to treat various diseases. RESULTS A lipid-polymer hybrid system complexed with mRNA was evaluated regarding its efficiency to transfect dendritic cells (DCs) by simultaneous live cell video imaging of both particle uptake and reporter gene expression. We prepared and optimized NPs consisting of poly (lactid-co-glycolid) (PLGA) coated with the cationic lipid 1, 2-di-O-octadecenyl-3-trimethylammonium propane abbreviated as LPNs. An earlier developed polymer-based delivery system (chitosan-PLGA NPs) served for comparison. Both NPs types were complexed with mRNA-mCherry at various ratios. While cellular uptake and toxicity of either NPs was comparable, LPNs showed a significantly higher transfection efficiency of ~ 80% while chitosan-PLGA NPs revealed only ~ 5%. Further kinetic analysis elicited a start of protein translation after 1 h, with a maximum after 4 h and drop of transgene expression after 48 h post-transfection, in agreement with the transient nature of mRNA. CONCLUSIONS Charge-mediated complexation of mRNA to NPs enables efficient and fast cellular delivery and subsequent protein translation. While cellular uptake of both NP types was comparable, mRNA transgene expression was superior to polymer-based NPs when delivered by lipid-polymer NPs.
Collapse
Affiliation(s)
- Hanzey Yasar
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Alexander Biehl
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Xabi Murgia
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Intracellular miRNA or siRNA delivery and function. Biosystems 2018; 171:20-25. [DOI: 10.1016/j.biosystems.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022]
|