1
|
Igamberdiev AU, Shklovskiy-Kordi NE. Physical limits of natural computation as the biological constraints of morphogenesis, evolution, and consciousness: On the 100th anniversary of Efim Liberman (1925-2011). Biosystems 2025; 251:105451. [PMID: 40058561 DOI: 10.1016/j.biosystems.2025.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Efim Liberman (1925-2011) introduced in 1972 the idea of natural computation realized internally by living systems. He considered the physical principles employed by living systems as essential constraints that limit the computational process occurring in the course of adaptation, morphogenesis, and neural activity. The most general limits determined by the physical fundamental constants are universal for all nature. However, the more specific constraints are intrinsic to each biological system and can be overcome in the course of the evolutionary process. We discuss the roles of biological macromolecules, particularly the cytoskeleton, in shaping the actualization patterns formed in the internal measurement process occurring in living systems. Cytoskeletal rearrangements determine cellular, morphogenetic, and perceptive transformations in living systems and participate in the combinatorial genetic events that lead to evolutionary transformations. The operation of neurons is based on the transmission of signals via the cytoskeleton, where the digital output is generated that can be decoded through a reflexive action of the perceiving agent. It is concluded that the principles of natural computation formulated by Liberman represent the most fundamental feature of living beings and form the basis for the general theory of biological systems, with essential consequences for understanding metabolic closure, morphogenesis, evolution, and consciousness.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | |
Collapse
|
2
|
Igamberdiev AU. Toward the Relational Formulation of Biological Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 26:43. [PMID: 38248169 PMCID: PMC10814957 DOI: 10.3390/e26010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Classical thermodynamics employs the state of thermodynamic equilibrium, characterized by maximal disorder of the constituent particles, as the reference frame from which the Second Law is formulated and the definition of entropy is derived. Non-equilibrium thermodynamics analyzes the fluxes of matter and energy that are generated in the course of the general tendency to achieve equilibrium. The systems described by classical and non-equilibrium thermodynamics may be heuristically useful within certain limits, but epistemologically, they have fundamental problems in the application to autopoietic living systems. We discuss here the paradigm defined as a relational biological thermodynamics. The standard to which this refers relates to the biological function operating within the context of particular environment and not to the abstract state of thermodynamic equilibrium. This is defined as the stable non-equilibrium state, following Ervin Bauer. Similar to physics, where abandoning the absolute space-time resulted in the application of non-Euclidean geometry, relational biological thermodynamics leads to revealing the basic iterative structures that are formed as a consequence of the search for an optimal coordinate system by living organisms to maintain stable non-equilibrium. Through this search, the developing system achieves the condition of maximization of its power via synergistic effects.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1C 5S7, Canada
| |
Collapse
|
3
|
Miller WB, Baluška F, Reber AS. A revised central dogma for the 21st century:all biology is cognitive information processing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00057-3. [PMID: 37268025 DOI: 10.1016/j.pbiomolbio.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Crick's Central Dogma has been a foundational aspect of 20th century biology, describing an implicit relationship governing the flow of information in biological systems in biomolecular terms. Accumulating scientific discoveries support the need for a revised Central Dogma to buttress evolutionary biology's still-fledgling migration from a Neodarwinian canon. A reformulated Central Dogma to meet contemporary biology is proposed: all biology is cognitive information processing. Central to this contention is the recognition that life is the self-referential state, instantiated within the cellular form. Self-referential cells act to sustain themselves and to do so, cells must be in consistent harmony with their environment. That consonance is achieved by the continuous assimilation of environmental cues and stresses as information to self-referential observers. All received cellular information must be analyzed to be deployed as cellular problem-solving to maintain homeorhetic equipoise. However, the effective implementation of information is definitively a function of orderly information management. Consequently, effective cellular problem-solving is information processing and management. The epicenter of that cellular information processing is its self-referential internal measurement. All further biological self-organization initiates from this obligate activity. As the internal measurement by cells of information is self-referential by definition, self-reference is biological self-organization, underpinning 21st century Cognition-Based Biology.
Collapse
Affiliation(s)
| | | | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Gontier N, Sukhoverkhov A. Reticulate evolution underlies synergistic trait formation in human communities. Evol Anthropol 2023; 32:26-38. [PMID: 36205197 DOI: 10.1002/evan.21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/19/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
This paper investigates how reticulate evolution contributes to a better understanding of human sociocultural evolution in general, and community formation in particular. Reticulate evolution is evolution as it occurs by means of symbiosis, symbiogenesis, lateral gene transfer, infective heredity, and hybridization. From these mechanisms and processes, we mainly zoom in on symbiosis and we investigate how it underlies the rise of (1) human, plant, animal, and machine interactions typical of agriculture, animal husbandry, farming, and industrialization; (2) diet-microbiome relationships; and (3) host-virome and other pathogen interactions that underlie human health and disease. We demonstrate that reticulate evolution necessitates an understanding of behavioral and cultural evolution at a community level, where reticulate causal processes underlie the rise of synergistic organizational traits.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab, Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Anton Sukhoverkhov
- Department of Philosophy, Kuban State Agrarian University, Krasnodar, Russia
| |
Collapse
|
6
|
Cottam R, Iurato G, Igamberdiev AU. Fundamentals of evolutionary transformations in biological systems. Biosystems 2022; 222:104779. [PMID: 36103919 DOI: 10.1016/j.biosystems.2022.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ron Cottam
- The Living Systems Project, Dept. of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, 45 Arctic Avenue, A1C 5S7, Canada.
| |
Collapse
|
7
|
Medrano-Macías J, Flores-Gallegos AC, Nava-Reyna E, Morales I, Tortella G, Solís-Gaona S, Benavides-Mendoza A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3203. [PMID: 36501243 PMCID: PMC9740111 DOI: 10.3390/plants11233203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This review highlights the relationship between the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS), and H2S-reactive sulfur species (RSS). These three metabolic pathways, collectively termed reactive oxygen, nitrogen, and sulfur species (RONSS), constitute a conglomerate of reactions that function as an energy dissipation mechanism, in addition to allowing environmental signals to be transduced into cellular information. This information, in the form of proteins with posttranslational modifications or signaling metabolites derived from RONSS, serves as an inducer of many processes for redoxtasis and metabolic adjustment to the changing environmental conditions to which plants are subjected. Although it is thought that the role of reactive chemical species was originally energy dissipation, during evolution they seem to form a cluster of RONSS that, in addition to dissipating excess excitation potential or reducing potential, also fulfils essential signaling functions that play a vital role in the stress acclimation of plants. Signaling occurs by synthesizing many biomolecules that modify the activity of transcription factors and through modifications in thiol groups of enzymes. The result is a series of adjustments in plants' gene expression, biochemistry, and physiology. Therefore, we present an overview of the synthesis and functions of the RONSS, considering the importance and implications in agronomic management, particularly on the biostimulation of crops.
Collapse
Affiliation(s)
- Julia Medrano-Macías
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Adriana Carolina Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Erika Nava-Reyna
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, National Center for Disciplinary Research in Water, Soil, Plants and Atmosphere Relations, Gomez Palacio 35150, Mexico
| | - Isidro Morales
- Instituto Politécnico Nacional, Interdisciplinary Research Center for Regional Integral Development, Oaxaca 71230, Mexico
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
8
|
Gontier N. Teleonomy as a problem of self-causation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
A theoretical framework is provided to explore teleonomy as a problem of self-causation, distinct from upward, downward and reticulate causation. Causality theories in biology are often formulated within hierarchy theories, where causation is conceptualized as running up or down the rungs of a ladder-like hierarchy or, more recently, as moving between multiple hierarchies. Research on the genealogy of cosmologies demonstrates that in addition to hierarchy theories, causality theories also depend upon ideas of time. This paper explores the roots and impact of both time and hierarchy thinking on causal reasoning in the evolutionary sciences. Within evolutionary biology, the Neodarwinian synthesis adheres to a linear notion of time associated with linear hierarchies that portray upward causation. Eco-evo-devo schools recognize the importance of downward causation and consequently receive resistance from the standard view because downward causation is sometimes understood as backward causation, considered impossible by adherents of a linear time model. In contrast, downward causation works with a spatial or presential time notion. Hybridization, lateral gene transfer, infective heredity, symbiosis and symbiogenesis require recognition of reticulate causation occurring in both space and time, or spacetime, between distinct and interacting ontological hierarchies. Teleonomy is distinct from these types of causation because it invokes the problem of self-causation. By asking how the focal level in a hierarchy can persist through time, self-causation raises philosophical concerns on the nature of duration, identity and individuality.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa , 17 49-016 Lisboa , Portugal
| |
Collapse
|
9
|
Igamberdiev AU. Overcoming the limits of natural computation in biological evolution toward the maximization of system efficiency. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The goal-directedness of biological evolution is realized via the anticipatory achievement of the final state of the system that corresponds to the condition of its perfection in self-maintenance and in adaptability. In the course of individual development, a biological system maximizes its power via synergistic effects and becomes able to perform external work most efficiently. In this state, defined as stasis, robust self-maintaining configurations act as attractors resistant to external and internal perturbations. This corresponds to the local energy–time constraints that most efficiently fit the integral optimization of the whole system. In evolution, major evolutionary transitions that establish new states of stasis are achieved via codepoiesis, a process in which the undecided statements of existing coding systems form the basis for the evolutionary unfolding of the system by assigning new values to them. The genetic fixation of this macroevolutionary process leads to new programmes of individual development representing the process of natural computation. The phenomenon of complexification in evolution represents a metasystem transition that results in maximization of a system’s power and in the ability to increase external work performed by the system.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland , St. John’s, NL, A1C 5S7 , Canada
| |
Collapse
|