1
|
Bernal-Martínez AM, Angulo-Pachón CA, Galindo F, Miravet JF. Reversible Redox Controlled DNA Condensation by a Simple Noncanonical Dicationic Diphenylalanine Derivative. Biopolymers 2025; 116:e70001. [PMID: 39873341 DOI: 10.1002/bip.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
We report the reversible redox-controlled DNA condensation using a simple dicationic diphenylalanine derivative which contains a disulfide unit as linker. Despite the conventional belief that DNA condensing agents require a charge of +3 or higher, this dicationic molecule functions below its critical aggregation concentration, representing a non-canonical DNA condensing agent. The interaction with DNA of the studied compound combines electrostatic effects with hydrophobic/stacking interactions provided with the diphenylalanine moiety. Upon reduction, the condensing agent is cleaved, weakening its interaction with DNA and resulting in DNA decondensation. Oxidation reverses this process, restoring the condensed state. This behavior was confirmed through ThT displacement, circular dichroism, 1H NMR, and dynamic light scattering studies. Overall, this study introduces an innovative alternative for dynamic DNA manipulation applications.
Collapse
Affiliation(s)
| | - César A Angulo-Pachón
- Departmento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
- Departmento de Química Orgánica y Bioorgánica, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Francisco Galindo
- Departmento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| | - Juan F Miravet
- Departmento de Química Inorgánica y Orgánica, Universidad Jaume I, Castellón, Spain
| |
Collapse
|
2
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Zhang P, Zhang H, Zheng B, Wang H, Qi X, Wang S, Liu Z, Sun L, Liu Y, Qin X, Fan W, Ma M, Lai WF, Zhang D. Combined Self-Assembled Hendeca-Arginine Nanocarriers for Effective Targeted Gene Delivery to Bladder Cancer. Int J Nanomedicine 2022; 17:4433-4448. [PMID: 36172006 PMCID: PMC9512291 DOI: 10.2147/ijn.s379356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bladder cancer (BCa) is among the most prevalent cancers worldwide. However, the effectiveness of intravesical therapy for BCa is limited due to the short dwell time and the presence of the permeation barrier. Methods Nanocomplexes were self-assembled between DNA and hendeca-arginine peptide (R11). Stepwise intravesical instillation of R11 and the generated nanocomplexes significantly enhanced the targeting capacity and penetration efficiency in BCa therapy. The involved mechanism of cellular uptake and penetration of the nanocomplexes was determined. The therapeutic effect of the nanocomplexes was verified preclinically in murine orthotopic BCa models. Results Nanocomplexes exhibited the best BCa targeting efficiency at a nitrogen-to-phosphate (NP) ratio of 5 but showed a lack of stability during cellular uptake. The method of stepwise intravesical instillation not only increased the stability and target specificity of the DNA component but also caused the delivered DNA to more effectively penetrate into the glycosaminoglycan layer and plasma membrane. The method promotes the accumulation of the delivered DNA in the clathrin-independent endocytosis pathway, directs the intracellular trafficking of the delivered DNA to nonlysosome-localized regions, and enables the intercellular transport of the delivered DNA via a direct transfer mechanism. In preclinical trials, our stepwise method was shown to remarkably enhance the targeting and penetration efficiency of DNA in murine orthotopic BCa models. Conclusion With this method, a stepwise intravesical instillation of self-assembled nanocomplexes, which are generated from hendeca-arginine peptides, was achieved; thus, this method offers an effective strategy to deliver DNA to target and penetrate BCa cells during gene therapy and warrants further development for future intravesical gene therapy in the clinical context.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Haibao Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaolong Qi
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Shuai Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Zhenghong Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Li Sun
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Weijiao Fan
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Minghai Ma
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| |
Collapse
|
4
|
Thomas J, Punia K, Montclare JK. Peptides as key components in the design of
non‐viral
vectors for gene delivery. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph Thomas
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
- Department of Chemistry New York University New York New York USA
- Department of Biomaterials New York University College of Dentistry New York New York USA
| |
Collapse
|
5
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
6
|
An amphiphilic peptide with cell penetrating sequence for highly efficient gene transfection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Martínez-Negro M, Sánchez-Arribas N, Guerrero-Martínez A, Moyá ML, Tros de Ilarduya C, Mendicuti F, Aicart E, Junquera E. A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid. Pharmaceutics 2019; 11:E632. [PMID: 31783620 PMCID: PMC6956073 DOI: 10.3390/pharmaceutics11120632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
The insertion of biocompatible amino acid moieties in non-viral gene nanocarriers is an attractive approach that has been recently gaining interest. In this work, a cationic lipid, consisting of a lysine-derived moiety linked to a C12 chain (LYCl) was combined with a common fusogenic helper lipid (DOPE) and evaluated as a potential vehicle to transfect two plasmid DNAs (encoding green fluorescent protein GFP and luciferase) into COS-7 cells. A multidisciplinary approach has been followed: (i) biophysical characterization based on zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and cryo-transmission electronic microscopy (cryo-TEM); (ii) biological studies by fluorescence assisted cell sorting (FACS), luminometry, and cytotoxicity experiments; and (iii) a computational study of the formation of lipid bilayers and their subsequent stabilization with DNA. The results indicate that LYCl/DOPE nanocarriers are capable of compacting the pDNAs and protecting them efficiently against DNase I degradation, by forming Lα lyotropic liquid crystal phases, with an average size of ~200 nm and low polydispersity that facilitate the cellular uptake process. The computational results confirmed that the LYCl/DOPE lipid bilayers are stable and also capable of stabilizing DNA fragments via lipoplex formation, with dimensions consistent with experimental values. The optimum formulations (found at 20% of LYCl content) were able to complete the transfection process efficiently and with high cell viabilities, even improving the outcomes of the positive control Lipo2000*.
Collapse
Affiliation(s)
- María Martínez-Negro
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Natalia Sánchez-Arribas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - María Luisa Moyá
- Grupo de Química Coloidal y Catálisis Micelar, Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Conchita Tros de Ilarduya
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31080 Pamplona, Spain;
| | - Francisco Mendicuti
- Departmento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Quimica Andrés M. del Rio, Universidad de Alcalá, 28871 Alcalá de Henares, Spain;
| | - Emilio Aicart
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.M.-N.); (N.S.-A.); (A.G.-M.); (E.A.)
| |
Collapse
|
8
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
9
|
Zinchenko A, Hiramatsu H, Yamaguchi H, Kubo K, Murata S, Kanbe T, Hazemoto N, Yoshikawa K, Akitaya T. Amino Acid Sequence of Oligopeptide Causes Marked Difference in DNA Compaction and Transcription. Biophys J 2019; 116:1836-1844. [PMID: 31076102 PMCID: PMC6531782 DOI: 10.1016/j.bpj.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
Compaction of T4 phage DNA (166 kbp) by short oligopeptide octamers composed of two types of amino acids, four cationic lysine (K), and four polar nonionic serine (S) having different sequence order was studied by single-molecule fluorescent microscopy. We found that efficient DNA compaction by oligopeptide octamers depends on the geometrical match between phosphate groups of DNA and cationic amines. The amino acid sequence order in octamers dramatically affects the mechanism of DNA compaction, which changes from a discrete all-or-nothing coil-globule transition induced by a less efficient (K4S4) octamer to a continuous compaction transition induced by a (KS)4 octamer with a stronger DNA-binding character. This difference in the DNA compaction mechanism dramatically changes the packaging density, and the morphology of T4 DNA condensates: DNA is folded into ordered toroidal or rod morphologies during all-or-nothing compaction, whereas disordered DNA condensates are formed as a result of the continuous DNA compaction. Furthermore, the difference in DNA compaction mechanism has a certain effect on the inhibition scenario of the DNA transcription activity, which is gradual for the continuous DNA compaction and abrupt for the all-or-nothing DNA collapse.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan.
| | - Hiroyuki Hiramatsu
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | - Koji Kubo
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Shizuaki Murata
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Toshio Kanbe
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, School of Medicine, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Norio Hazemoto
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tatsuo Akitaya
- Department of Chemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
10
|
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials. BONE REPAIR BIOMATERIALS 2019:411-446. [DOI: 10.1016/b978-0-08-102451-5.00016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Teo P, Wang X, Chen B, Zhang H, Yang X, Huang Y, Tang J. Complex of TNF-α and Modified Fe 3O 4 Nanoparticles Suppresses Tumor Growth by Magnetic Induction Hyperthermia. Cancer Biother Radiopharm 2018; 32:379-386. [PMID: 29265918 DOI: 10.1089/cbr.2017.2404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles are increasingly applied in clinical area for drug delivery, also in magnetic induction hyperthermia (MIH), and so on. The present research would prepare appropriately modified superparamagnetic iron oxide nanoparticles (SPIONs) to conduct MIH and transfect the anticancer cytokine TNF-α into cells. MATERIALS AND METHODS The SPIONs were surface-modified by 3-aminopropyltriethoxysilane (APTS) and/or protamine sulfate (PRO). The combined MIH using SPIONs and gene therapy were applied to treat Hep G2 cells and tumor model transplanted in nude mice. RESULTS The PRO-SPIONs (the surfaces were sequentially modified by APTS and PRO) showed high transfection efficiency for TNF-α gene with no obvious cytotoxicity. It also exhibited great temperature rising performance under alternating current magnetic field. The combined MIH and gene therapy using PRO-SPIONs/TNF-α complex could reduce cell variability of Hep G2 cells and tumor size transplanted in nude mice. CONCLUSIONS The PRO-SPIONs efficiently transfect the TNF-α gene into Hep G2 cells. Cells expressed more TNF-α when they were exposed to alternating current magnetic field only once. Combined MIH and gene therapy for treatment in vivo exhibited better effects than MIH or gene therapy alone. The combined MIH and gene therapy is promising in liver cancer treatment.
Collapse
Affiliation(s)
- Peishan Teo
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| | - Xiaowen Wang
- 2 Yuquan Hospital, Medical Center, Tsinghua University , Beijing, People's Republic of China
| | - Benke Chen
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,3 Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine , Beijing, People's Republic of China
| | - Han Zhang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,4 Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University , Jinan, People's Republic of China
| | - Xin Yang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China .,3 Department of Biological Pharmaceuticals, Beijing University of Chinese Medicine , Beijing, People's Republic of China
| | - Yun Huang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| | - Jintian Tang
- 1 Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University , Beijing, People's Republic of China
| |
Collapse
|
12
|
Cardoso S, de Alcântara Pessoa Filho P, Sousa F, Rodrigues Azzoni A. Arginine and di-arginine ligands for plasmid DNA purification using negative chromatography. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1777-1786. [DOI: 10.1016/j.nano.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|
14
|
Cao M, Wang Y, Zhao W, Qi R, Han Y, Wu R, Wang Y, Xu H. Peptide-Induced DNA Condensation into Virus-Mimicking Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24349-24360. [PMID: 29979028 DOI: 10.1021/acsami.8b00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of surfactant-like peptides have been designed for inducing DNA condensation, which are all comprised of the same set of amino acids in different sequences. Results from experiments and molecular dynamics simulations show that the peptide's self-assembly and DNA-interaction behaviors can be well manipulated through sequence variation. With optimized pairing modes between the β-sheets, the peptide of I3V3A3G3K3 can induce efficient DNA condensation into virus-mimicking structures. The condensation involves two steps; the peptide molecules first bind onto the DNA chain through electrostatic interactions and then self-associate into β-sheets under hydrophobic interactions and hydrogen bonding. In such condensates, the peptide β-sheets act as scaffolds to assist the ordered arrangement of DNA, mimicking the very nature of the virus capsid in helping DNA packaging. Such a hierarchy affords an extremely stable structure to attain the highly condensed state and protect DNA against enzymatic degradation. Moreover, the condensate size can be well tuned by the DNA length. The condensates with smaller sizes and narrow size distribution can deliver DNA efficiently into cells. The study helps not only for probing into the DNA packaging mechanism in virus but also delineating the role of peptide self-assembly in DNA condensation, which may lead to development of peptide-based gene vectors for therapeutic applications.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Yu Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Wenjing Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Ruilian Qi
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuchun Han
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| |
Collapse
|
15
|
David G, Turin-Moleavin I, Ursu LE, Peptanariu D, Ailincai D. Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0629-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
de Pinho Favaro MT, Sánchez-García L, Sánchez-Chardi A, Roldán M, Unzueta U, Serna N, Cano-Garrido O, Azzoni AR, Ferrer-Miralles N, Villaverde A, Vázquez E. Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine (Lond) 2018; 13:255-268. [DOI: 10.2217/nnm-2017-0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nanoparticle–cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. Results: By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. Conclusion: The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av Candido Rondon, 400, 13083–875 Campinas, SP, Brazil
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | | | - Mónica Roldán
- Unitat de Microscòpia Confocal, IPER, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, No. 380, 05508-900, São Paulo, SP, Brazil
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Collapse of DNA in packaging and cellular transport. Int J Biol Macromol 2017; 109:36-48. [PMID: 29247730 DOI: 10.1016/j.ijbiomac.2017.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
The dawn of molecular biology and recombinant DNA technology arose from our ability to manipulate DNA, including the process of collapse of long extended DNA molecules into nanoparticles of approximately 100 nm diameter. This condensation process is important for the packaging of DNA in the cell and for transporting DNA through the cell membrane for gene therapy. Multivalent cations, such as natural polyamines (spermidine and spermine), were initially recognized for their ability to provoke DNA condensation. Current research is targeted on molecules such as linear and branched polymers, oligopeptides, polypeptides and dendrimers that promote collapse of DNA to nanometric particles for gene therapy and on the energetics of DNA packaging.
Collapse
|
18
|
Cao M, Zhao W, Zhou P, Xie Z, Sun Y, Xu H. Peptide nucleic acid-ionic self-complementary peptide conjugates: highly efficient DNA condensers with specific condensing mechanism. RSC Adv 2017. [DOI: 10.1039/c6ra26329a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peptide nucleic acid-ionic self-complementary peptide conjugates can induce efficient DNA condensation via base-pairing interaction and peptide association.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| | - Wenjing Zhao
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| | - Zilong Xie
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266555
- P. R. China
| |
Collapse
|
19
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
20
|
Zhang XJ, Zhang YM, Wang Z, Chen Y, Liu Y. Cooperative DNA Compaction by Ternary Supramolecular Complex with Cucurbituril/Cyclodextrin Pair. ChemistrySelect 2016. [DOI: 10.1002/slct.201600066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu-Jie Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ying-Ming Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ze Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yong Chen
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| | - Yu Liu
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| |
Collapse
|
21
|
Kopaczynska M, Schulz A, Fraczkowska K, Kraszewski S, Podbielska H, Fuhrhop JH. Selective condensation of DNA by aminoglycoside antibiotics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:287-99. [PMID: 26646261 PMCID: PMC4823326 DOI: 10.1007/s00249-015-1095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/05/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Abstract
The condensing effect of aminoglycoside antibiotics on the structure of double-stranded DNA was examined. The selective condensation of DNA by small molecules is an interesting approach in biotechnology. Here, we present the interaction between calf thymus DNA and three types of antibiotic molecules: tobramycin, kanamycin, and neomycin. Several techniques were applied to study this effect. Atomic force microscopy, transmission electron microscopy images, and nuclear magnetic resonance spectra showed that the interaction of tobramycin with double-stranded DNA caused the rod, toroid, and sphere formation and very strong condensation of DNA strands, which was not observed in the case of other aminoglycosides used in the experiment. Studies on the mechanisms by which small molecules interact with DNA are important in understanding their functioning in cells, in designing new and efficient drugs, or in minimizing their adverse side effects. Specific interactions between tobramycin and DNA double helix was modeled using molecular dynamics simulations. Simulation study shows the aminoglycoside specificity to bend DNA double helix, shedding light on the origins of toroid formation. This phenomenon may lighten the ototoxicity or nephrotoxicity issues, but also other adverse reactions of aminoglycoside antibiotics in the human body.
Collapse
Affiliation(s)
- M Kopaczynska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - A Schulz
- Institut für Chemie and Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - K Fraczkowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - S Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - H Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - J H Fuhrhop
- Institut für Chemie and Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
22
|
Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery. Int J Nanomedicine 2015; 10:7183-96. [PMID: 26648722 PMCID: PMC4664533 DOI: 10.2147/ijn.s95245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.
Collapse
Affiliation(s)
- Arvind K Jain
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK ; Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashley Massey
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helmy Yusuf
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Denise M McDonald
- Centre for Vision & Vascular Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Vicky L Kett
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
23
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
24
|
Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials 2015; 62:155-63. [DOI: 10.1016/j.biomaterials.2015.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
|
25
|
Yue P, Zhang Y, Guo ZF, Cao AC, Lu ZL, Zhai YG. Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors. Org Biomol Chem 2015; 13:4494-505. [DOI: 10.1039/c4ob02676d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bifunctional molecules with different combinations of [12]aneN3 and coumarin moieties were successfully applied in DNA condensation and gene transfection.
Collapse
Affiliation(s)
- Pan Yue
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Ying Zhang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Zhi-Fo Guo
- College of Chemistry
- Beijing Normal University
- Beijing
- China
- College of Life Science
| | - Ao-Cheng Cao
- Institute of Plant Protection
- Chinese Academy of Agricultural Sciences
- Beijing
- China
| | - Zhong-Lin Lu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Yong-Gong Zhai
- College of Life Science
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
26
|
Cai X, Zhu H, Dong H, Li Y, Su J, Shi D. Suppression of VEGF by reversible-PEGylated histidylated polylysine in cancer therapy. Adv Healthc Mater 2014; 3:1818-27. [PMID: 24805287 DOI: 10.1002/adhm.201400063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 01/08/2023]
Abstract
A reversible-PEGylated polylysine is designed and developed for efficient delivery of siRNA. In this unique structure, the ε-amino groups of disulfide linked poly(ethylene glycol) (PEG) and polylysine (mPEG-SS-PLL) are partially replaced by histidine groups, in order to develop the histidylated reversible-PEGylated polylysine (mPEG-SS-PLH), for enhanced endosome escape ability. The transfection efficacy of mPEG-SS-PLH is found to closely correlate with histidine substitution. Its maximum transfection efficiencies are determined, respectively, to be 75%, 42%, and 24%, against 293T, MCF-7, and PC-3 cells. These data indicate that the transfection efficiencies can equal or even outweigh PEI-25k in the corresponding cells (80%, 38.5%, and 20%). The in vivo circulation and biodistribution of the polyplexes are monitored by fluorescent imaging. The in vivo gene transfection is carried out by intravenous injection of pEGFP to BALB/c mice using the xenograft models. The in vivo experimental results show effective inhibition of tumor growth by mPEG-SS-PLH/siRNA-VEGF, indicating its high potential for clinical applications.
Collapse
Affiliation(s)
- Xiaojun Cai
- Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine, Tongji University; Shanghai 200120 China
| | - Haiyan Zhu
- Laboratory of Oral Biomedical Science and Translational Medicine; Department of Prosthodontics; School of Stomatology; Tongji University; Shanghai 200072 China
| | - Haiqing Dong
- Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine, Tongji University; Shanghai 200120 China
| | - Yongyong Li
- Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine, Tongji University; Shanghai 200120 China
| | - Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine; Department of Prosthodontics; School of Stomatology; Tongji University; Shanghai 200072 China
| | - Donglu Shi
- Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine, Tongji University; Shanghai 200120 China
- Materials Science and Engineering Program; Department of Mechanical and Materials Engineering; College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH 10 45221 USA
| |
Collapse
|
27
|
Bao FF, Xu XX, Zhou W, Pang CY, Li Z, Gu ZG. Enantioselective DNA condensation induced by heptameric lanthanum helical supramolecular enantiomers. J Inorg Biochem 2014; 138:73-80. [DOI: 10.1016/j.jinorgbio.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
28
|
Lee A, Karcz A, Akman R, Zheng T, Kwon S, Chou ST, Sucayan S, Tricoli LJ, Hustedt JM, Leng Q, Kahn JD, Mixson AJ, Seog J. Direct Observation of Dynamic Mechanical Regulation of DNA Condensation by Environmental Stimuli. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Lee A, Karcz A, Akman R, Zheng T, Kwon S, Chou ST, Sucayan S, Tricoli LJ, Hustedt JM, Leng Q, Kahn JD, Mixson AJ, Seog J. Direct observation of dynamic mechanical regulation of DNA condensation by environmental stimuli. Angew Chem Int Ed Engl 2014; 53:10631-5. [PMID: 25146232 DOI: 10.1002/anie.201403499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Indexed: 11/08/2022]
Abstract
Gene delivery is a promising way to treat hereditary diseases and cancer; however, there is little understanding of DNA:carrier complex mechanical properties, which may be critical for the protection and release of nucleic acids. We applied optical tweezers to directly measure single-molecule mechanical properties of DNA condensed using 19-mer poly-L-lysine (PLL) or branched histidine-lysine (HK) peptides. Force-extension profiles indicate that both carriers condense DNA actively, showing force plateaus during stretching and relaxation cycles. As the environment such as carrier concentration, pH, and the presence of zinc ions changes, DNA:HK complexes showed dynamically regulated mechanical properties at multiple force levels. The fundamental knowledge from this study can be applied to design a mechanically tailored complex which may enhance transfection efficiency by controlling the stability of the complex temporally and spatially.
Collapse
Affiliation(s)
- Amy Lee
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (USA)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Raad MD, Teunissen EA, Mastrobattista E. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers. Nanomedicine (Lond) 2014; 9:2217-32. [DOI: 10.2217/nnm.14.90] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The therapeutic use of nucleic acids relies on the availability of sophisticated delivery systems for targeted and intracellular delivery of these molecules. Such a gene delivery should possess essential characteristics to overcome several extracellular and intracellular barriers. Peptides offer an attractive platform for nonviral gene delivery, as several functional peptide classes exist capable of overcoming these barriers. However, none of these functional peptide classes contain all the essential characteristics required to overcome all of the barriers associated with successful gene delivery. Combining functional peptides into multifunctional peptide vectors will be pivotal for improving peptide-based gene delivery systems. By using combinatorial strategies and high-throughput screening, the identification of multifunctional peptide vectors will accelerate the optimization of peptide-based gene delivery systems.
Collapse
Affiliation(s)
- Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
31
|
Céspedes MV, Unzueta U, Tatkiewicz W, Sánchez-Chardi A, Conchillo-Solé O, Álamo P, Xu Z, Casanova I, Corchero JL, Pesarrodona M, Cedano J, Daura X, Ratera I, Veciana J, Ferrer-Miralles N, Vazquez E, Villaverde A, Mangues R. In vivo architectonic stability of fully de novo designed protein-only nanoparticles. ACS NANO 2014; 8:4166-76. [PMID: 24708510 DOI: 10.1021/nn4055732] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Collapse
Affiliation(s)
- María Virtudes Céspedes
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-SantPau) , Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tang Q, Cao B, Lei X, Sun B, Zhang Y, Cheng G. Dextran-peptide hybrid for efficient gene delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5202-5208. [PMID: 24786753 DOI: 10.1021/la500905z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gene therapy has drawn significant interest in the past two decades since it provides a promising strategy to treat both genetic disorders and acquired diseases. However, the transfer of gene therapy to clinical applications is troubled with many difficulties, since many current systems are of toxicity, low transfection efficiency and low biodegradability. To address these challenges, we developed a dextran-peptide hybrid system as a safe and efficient vector for gene therapy and investigated the structure-function-cytotoxicity relationship of this dextran-peptide hybrid system. Dextrans (Dex10, Dex20, and Dex70) with different molecular weights (10, 20 and 70 kDa) were conjugated with a cationic peptide, R5H5, at various degrees of substitution. Gene expression and cytotoxicity mediated by this delivery system were evaluated against SKOV-3 human ovarian carcinoma cells and compared to 25 kDa branched poly(ethylenimine) (PEI). The results showed that Dex10-R5H5 and Dex20-R5H5 hybrids derived from low molecular weight dextrans induced higher gene expression and lower cytotoxicity than Dex70-R5H5 hybrid from higher molecular weight dextran. The best performance on gene expression was achieved by Dex10-R5H5 at 40% substitution of R5H5, which induced greater gene expression than PEI at a low N/P ratio of 5. Dex10-R5H5/DNA complexes at 40% substitution of R5H5 also showed much higher cell viability (93%) than PEI/DNA (66%) at the same N/P ratio. These results indicate that the Dex-R5H5 hybrid with the low molecular weight of dextran and the high degree of substitution of R5H5 is a very promising material for safe and efficient gene therapy.
Collapse
Affiliation(s)
- Qiong Tang
- Department of Chemical and Biomolecular Engineering, University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | |
Collapse
|
33
|
Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY. The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 2014; 89:352-7. [PMID: 24210877 DOI: 10.1016/j.critrevonc.2013.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 01/18/2023] Open
|
34
|
Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm 2014; 11:683-96. [PMID: 24476132 DOI: 10.1021/mp400353n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity.
Collapse
Affiliation(s)
- Anita Mann
- CSIR-Institute of Genomics and Integrative Biology , Mall Road (near Jubilee Hall), Delhi 110 007, India
| | | | | | | | | | | |
Collapse
|
35
|
Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv 2014; 32:818-30. [PMID: 24389086 DOI: 10.1016/j.biotechadv.2013.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.
Collapse
Affiliation(s)
- Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Center for Bionanoengineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
36
|
Yan H, Yue P, Li Z, Guo Z, Lu Z. Syntheses of bifunctional molecules containing [12]aneN3 and carbazol moieties as effective DNA condensation agents. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5031-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Unzueta U, Saccardo P, Ferrer-Miralles N, García-Fruitós E, Vazquez E, Villaverde A, Cortés F, Mangues R. Improved performance of protein-based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnol Prog 2013; 29:1458-63. [DOI: 10.1002/btpr.1798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Francisco Cortés
- Servei de Cultius Cel·lulars, Producció d'Anticossos i Citometria, (SCAC), Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau; C/Sant Antoni Maria Claret, 167 08025 Barcelona Spain
| |
Collapse
|
39
|
Chitosan combined with poly-L-arginine as efficient, safe, and serum-insensitive vehicle with RNase protection ability for siRNA delivery. BIOMED RESEARCH INTERNATIONAL 2013; 2013:574136. [PMID: 23865058 PMCID: PMC3705865 DOI: 10.1155/2013/574136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 02/05/2023]
Abstract
Chitosan (CS) combined with poly-L-arginine (PLA) was formulated and evaluated for its performance to deliver siRNA to HeLa cells expressing enhanced green fluorescent protein (EGFP). Compared with the formulations using single polymer in which the polyplexes were completely formed at the weight ratio of >20 : 1 for CS/siRNA or 1 : 1 for PLA/siRNA, the combination of CS and PLA could reduce the amounts of the polymers required for the complete complexation with siRNA, thereby forming positively charged, nanosized polyplex at the weight ratio of CS/PLA/siRNA of 5 : 0.5: 1. In addition, while the transfection efficiency of CS/siRNA and PLA/siRNA was very low at physiological pH (7.4), CS/PLA/siRNA at the optimal weight ratio of 5 : 0.5 : 1 satisfactorily silenced the endogenous EGFP gene at pH 7.4 as well as at pH 6.4 without the deterrent effect from serum. The combined polymers could protect siRNA from RNase degradation over a period of at least 6 h. Furthermore, MTT assay results demonstrated that CS/PLA/siRNA complexes showed acceptably low cytotoxicity with 75% cell viability. Therefore, CS combined with PLA is easy to prepare, safe, and promising for use as an efficient siRNA delivery vehicle.
Collapse
|
40
|
Yang J, Wang HY, Yi WJ, Gong YH, Zhou X, Zhuo RX, Zhang XZ. PEGylated peptide based reductive polycations as efficient nonviral gene vectors. Adv Healthc Mater 2013. [PMID: 23184839 DOI: 10.1002/adhm.201200154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To overcome the critical barriers in gene delivery, a series of reducible polycations (RPCs) based on low molecular weight (LMW) peptides, i.e. PolyHK6 H, PolyHK6 H-mPEG1 , PolyHK6 H-mPEG2 , and PolyHK6 H-mPEG3 , with different poly(ethylene glycol) (PEG) contents, are synthesized and evaluated as nonviral gene vectors. All the RPCs exhibit lower cytotoxicity compared with 25 kDa polyethyleneimine (PEI) and PEGylated PEI (PEI-mPEG: PEI-mPEG1 , PEI-mPEG2 , and PEI-mPEG3 ). PolyHK6 H-mPEG1 and PolyHK6 H-mPEG2 can bind and condense plasmid deoxyribonucleic acid (pDNA) efficiently with a particle size of about 200 nm. Moreover, they display much higher transfection efficiency than that of 25 kDa PEI especially in serum-supplemented medium. Moreover, PolyHK6 H-mPEG1 has equal transfection efficiency with PEI-mPEG1 which is optimal in the PEI-mPEG, but PolyHK6 H-mPEG1 exhibits significantly lower cytotoxicity than PEI-mPEG1 . This is attributed to the fact that inter-peptide disulfide bonds can increase the stability of RPCs/pDNA complexes in extracellular environment and thereafter cleave in cytoplasm to facilitate the release of pDNA in intracellular environment. The PEGylated RPCs demonstrate here improved intracellular gene transfer performance and will have great potential applications in vivo.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kuan SL, Wu Y, Weil T. Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromol Rapid Commun 2013; 34:380-92. [DOI: 10.1002/marc.201200662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Indexed: 12/17/2022]
|
42
|
Tang Q, Cao B, Wu H, Cheng G. Cholesterol-peptide hybrids to form liposome-like vesicles for gene delivery. PLoS One 2013; 8:e54460. [PMID: 23382899 PMCID: PMC3559823 DOI: 10.1371/journal.pone.0054460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/11/2012] [Indexed: 11/24/2022] Open
Abstract
In this paper, four amphiphilic cholesterol-peptide conjugates (Ch-R5H5, Ch-R3H3, Ch-R5 and Ch-R5) were designed and synthesized, and their properties in gene delivery were evaluated in vitro with an aim of developing more efficient gene delivery carriers. These amphiphilic cholesterol-peptide conjugates are composed of hydrophobic cholesterol and positively charged peptides. They were able to self-assemble into micelles at low concentrations and their critical micelle concentrations in phosphate buffered saline (pH 7.4) are ≤85 µg/mL. Amphiphilic cholesterol-peptide conjugates condensed DNA more efficiently than a hydrophilic cationic oligoarginine (R10) peptide with no hydrophobic segment. Their transfection efficiencies were at least two orders of magnitude greater than that of R10 peptide in HEK-293 cells. Moreover, the introduction of histidine residues in cholesterol-peptide conjugates led to higher gene expression efficiency compared with cholesterol-peptides without histidine (Ch-R5 and Ch-R3), and the luciferase expression level was comparable or even higher than that induced by PEI at its optimal N/P ratio. In particular, Ch-R5H5 condensed DNA into smaller nanoparticles than Ch-R3H3 at higher N/P ratios, and the minimum size of Ch-R5H5/DNA complexes was 180 nm with zeta potential of 23 mV, achieved at the N/P ratio of 30. This liposome-like vesicle may be a promising gene delivery carrier for intravenous therapy.
Collapse
Affiliation(s)
- Qiong Tang
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Bin Cao
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Haiyan Wu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| |
Collapse
|
43
|
Abstract
Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga 1067, Latvia.
| |
Collapse
|
44
|
Kasyanenko NA, Lysyakova LA, Dribinskii BA, Zolotova YI, Nazarova OV, Panarin EF. DNA-polymer complexes for gene therapy. POLYMER SCIENCE SERIES C 2012. [DOI: 10.1134/s181123821207003x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Unzueta U, Ferrer-Miralles N, Cedano J, Zikung X, Pesarrodona M, Saccardo P, García-Fruitós E, Domingo-Espín J, Kumar P, Gupta KC, Mangues R, Villaverde A, Vazquez E. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials 2012; 33:8714-22. [PMID: 22954515 DOI: 10.1016/j.biomaterials.2012.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023]
Abstract
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yan J, Berezhnoy NV, Korolev N, Su CJ, Nordenskiöld L. Structure and internal organization of overcharged cationic-lipid/peptide/DNA self-assembly complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1794-800. [DOI: 10.1016/j.bbamem.2012.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/15/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
47
|
Biju V, Anas A, Akita H, Shibu ES, Itoh T, Harashima H, Ishikawa M. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. ACS NANO 2012; 6:3776-3788. [PMID: 22468986 DOI: 10.1021/nn2048608] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protection of genes against enzymatic degradation and overcoming of cellular barriers are critical for efficient gene delivery. The effectiveness of gene delivery by nonviral vectors depends mostly on the extent of DNA packaging or condensation. We show that Förster resonance energy transfer (FRET)-mediated photodecomposition of undesired acceptors in doubly labeled plasmid DNA (pDNA) and FRET recovery after acceptor photodecomposition (FRET-RAP) are effective methods for the detection of DNA condensation and decondensation. Our hypothesis is that undesired acceptors within the Förster distance of highly-photostable donors in precondensed DNA can be selectively photodecomposed by FRET. We investigate this hypothesis by the random labeling of pcDNA3.1-GL3 and pUC18DNA with quantum dots (QDs) as the energy donor and AlexaFluor594 or Cy5 as the acceptor. At first, the random labeling generates efficient FRET, also called intrinsic FRET, in precondensed DNA, which prevents us from decoding any changes in the FRET efficiency during DNA condensation. Next, we suppressed the intrinsic FRET by the FRET-mediated photodecomposition of acceptors within the Förster distance of QDs. Conversely, many acceptors kept intact beyond the Förster distance provide us with high FRET efficiency during the condensation of pDNA using protamine. Further, the FRET efficiency is significantly decreased during the decondensation of DNA using heparan sulfate and glutathione. The random labeling of DNA using excess acceptors around photostable donors followed by the FRET-mediated photodecomposition of undesired acceptors can be a promising method for not only the sensitive detection of DNA condensation by FRET but also the customization of biomolecular sensors.
Collapse
Affiliation(s)
- Vasudevanpillai Biju
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Takamatsu, Kagawa 761-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lo SL, Lua S, Song J, Wang S. A β-sheet structure interacting peptide for intracellular protein delivery into human pluripotent stem cells and their derivatives. Biochem Biophys Res Commun 2012; 421:616-20. [PMID: 22538367 DOI: 10.1016/j.bbrc.2012.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
The advance in stem cell research relies largely on the efficiency and biocompatibility of technologies used to manipulate stem cells. In our previous study, we had designed an amphipathic peptide RV24 that can deliver proteins into cancer cell lines efficiently without significant side effects. Encouraged by this observation, we moved forward to test whether RV24 could be used to deliver proteins into human embryonic stem cells and human induced pluripotent stem cells. RV24 successfully mediated protein delivery into these pluripotent stem cells, as well as their derivatives including neural stem cells and dendritic cells. Based on NMR studies and particle surface charge measurements, we proposed that hydrophobic domain of RV24 interacts with β-sheet structures of the proteins, followed by formation of "peptide cage" to facilitate delivery across cellular membrane. These findings suggest the feasibility of using amphipathic peptide to deliver functional proteins intracellularly for stem cell research.
Collapse
Affiliation(s)
- Seong Loong Lo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, 138669 Singapore, Singapore
| | | | | | | |
Collapse
|
49
|
Syntheses of [12]aneN3–oligopeptide conjugates as effective DNA condensation agents. Bioorg Med Chem 2012; 20:2897-904. [DOI: 10.1016/j.bmc.2012.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/23/2022]
|
50
|
Abstract
The review will discuss the influence of metal ions on conformational changes of oligonucleotides. First, a short definition of the torsion angles is given, followed by a concise yet critical overview of the commonly applied experimental techniques. Finally, the possible role of metals upon the following conformational changes of oligonucleotides is discussed: (i) the denaturation of double-strands, (ii) the transition from B- to A-DNA, (iii) the transition from right- to left-handed DNA and RNA, (iv) the condensation, (v) and other conformational changes. We conclude with a summary and outlook.
Collapse
Affiliation(s)
- Bernhard Spingler
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|