1
|
Rosa V, Silikas N, Yu B, Dubey N, Sriram G, Zinelis S, Lima AF, Bottino MC, Ferreira JN, Schmalz G, Watts DC. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent Mater 2024; 40:1773-1785. [PMID: 39129079 DOI: 10.1016/j.dental.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Nileshkumar Dubey
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, United States.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Spiros Zinelis
- School of Dentistry National and Kapodistrian University of Athens (NKUA), Greece.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Sao Paulo, Brazil.
| | - Marco C Bottino
- School of Dentistry, University of Michigan, Ann Arbor, USA.
| | - Joao N Ferreira
- Center of Excellence for Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Thailand.
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom.
| |
Collapse
|
2
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
3
|
Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release 2022; 346:328-354. [PMID: 35452764 DOI: 10.1016/j.jconrel.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Dendrimers have been comprehensively used for cargo delivery, nucleic acid delivery (genes, miRNA/siRNAs), delivery of macromolecules, and other various biomedical applications. Dendrimers are highly versatile in function and can be engineered as multifunctional biomacromolecules by modifying the surface for fulfilling different applications. Dendrimers are being used for crosslinking of existing synthetic and natural polymeric scaffolds to regulate their binding efficiency, stiffness, biocompatibility, transfection, and many other properties to mimic the in vivo extracellular matrix in tissue engineering and regenerative medicine (TERM). Dendritic inter-cellular linkers can enhance the linkages between cells and result in scaffold-independent tissue constructs. Effectively engineered dendrimers are the ideal molecules for delivering bioactive molecules such as cytokines, chemokines, growth factors, etc., and other metabolites for efficaciously regulating cell behavior. Dendrimeric nanostructures have shown tremendous results in various TERM fields like stem cells survival, osteogenesis, increased crosslinking for eye and corneal repair, and proliferation in cartilage. This review highlights the role and various aspects of dendritic polymers for TERM in general and with respect to specific tissues. This review also covers novel explorations and insights into the use of dendrimers in TERM, focusing on the developments in the past decade and perspective of the future.
Collapse
Affiliation(s)
- Aazam Shaikh
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
4
|
Natarajan M, Singh P, Mondal T, Kumar K, Das K, Dutt T, Bag S. In vitro propagation and cardiac differentiation of canine induced pluripotent stem cells on carbon nanotube substrates. Tissue Cell 2021; 71:101571. [PMID: 34139604 DOI: 10.1016/j.tice.2021.101571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have attracted an interest for personalized cell based therapy along with various other applications. There have been few studies that effective nanomaterial based scaffolds act as alternative to the commonly used feeder dependent in vitro maintenance of iPSCs. The present study provides the fundamental information on ex vivo behavior of canine iPSC (ciPSCs) maintained on carboxylic acid (COOH) functionalized single-walled carbon nanotubes (COOH-SWCNTs) and multi-walled carbon nanotubes (COOH-MWCNTs) substrates. Here in we evaluated the comparative colony morphology, propagation, characterization, cytocompatibility and differentiation capability of ciPSC cultured on MEF feeder taken as control, and COOH-SWCNTs and COOH-MWCNTs substrates. We observed a healthy growth of ciPSCs on both the types of carbon nanotubes (CNTs) similar to feeder. The ciPSC colonies grown on both CNTs were positive for alkaline phosphatase staining and expressed pluripotent markers with notable significance. Further, the ciPSC colonies grew on these CNTs retained the in vitro differentiation ability into three germ layers as well as cardiac cell. Cytotoxicity analysis revealed that (COOH) functionalized CNTs provided a culture condition of low cytotoxicity. The results of the present study indicated that (COOH) functionalized CNTs could be used as xeno-free substrate to support the maintenance of iPSCs.
Collapse
Affiliation(s)
- Mahalakshmi Natarajan
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Purnima Singh
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Tanmay Mondal
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kuldeep Kumar
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kinsuk Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sadhan Bag
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ishihara K, Ito M, Fukazawa K, Inoue Y. Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomater Sci Eng 2020; 6:3984-3993. [PMID: 33463330 DOI: 10.1021/acsbiomaterials.0c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to design a material surface for use in the analysis of the behavior of biomolecules at the interface of direct cell contact. A superhydrophilic surface was prepared with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), which was grafted onto a substrate with controlled polymer chain density. An arginine-glycine-aspartic acid (RGD) peptide was immobilized at the surface of the polymer graft surface (PMPC-RGD surface). Initial adhesion of the cells to this substrate was observed. The PMPC-RGD surface could enable cell adhesion only through RGD peptide-integrin interactions. The density and movability of the RGD peptide at the terminal of the graft PMPC chain and the orientation of the RGD peptide affected the density of adherent cells. Thus, the PMPC graft surface may be a good candidate for a new platform with the ability to immobilize biomolecules to a defined position and enable accurate analysis of their effects on cells.
Collapse
|
6
|
Loading the dice: The orientation of virus-like particles adsorbed on titanate assisted organosilanized surfaces. Biointerphases 2019; 14:011001. [PMID: 30691269 DOI: 10.1116/1.5077010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The organization of virus-like particles (VLPs) on surfaces is a relevant matter for both fundamental and biomedical sciences. In this work, the authors have tailored surfaces with different surface tension components aiming at finding a relationship with the affinity of the different geometric/surface features of icosahedral P22 VLPs. The surfaces have been prepared by titanate assisted organosilanization with glycidyloxy, amino, and perfluoro silanes. Vibrational and photoelectron spectroscopies have allowed identifying the different functional groups of the organosilanes on the surfaces. Atomic force microscopy (AFM) showed that, irrespective of the organosilane used, the final root mean square roughness remains below 1 nm. Contact angle analyses confirm the effective formation of a set of surface chemistries exhibiting different balance among surface tension components. The study of the adsorption of P22 VLPs has involved the analysis of the dynamics of virus immobilization by fluorescence microscopy and the interpretation of the final VLP orientation by AFM. These analyses give rise to statistical distributions pointing to a higher affinity of VLPs toward perfluorinated surfaces, with a dominant fivefold conformation on this hydrophobic surface, but threefold and twofold symmetries dominating on hydrophilic surfaces. These results can be explained in terms of a reinforced hydrophobic interaction between the perfluorinated surface and the dominating hydrophobic residues present at the P22 pentons.
Collapse
|
7
|
Burek M, Waśkiewicz S, Lalik A, Student S, Bieg T, Wandzik I. Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture. Biomater Sci 2018; 5:234-246. [PMID: 27921099 DOI: 10.1039/c6bm00624h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of thermoresponsive glycomicrogels with trehalose in the cross-links or with trehalose in the cross-links and as pending moieties was synthesized. These materials were obtained by surfactant-free precipitation copolymerization of N-isopropylacrylamide and various amounts of trehalose monomers. The resultant particles showed a spherical shape and a submicrometer hydrodynamic size with a narrow size distribution. At 25 °C, glycomicrogels in solutions with physiological ionic strength formed stable colloids, which further gelled upon heating to physiological temperature forming a macroscopic hydrogel with an interconnected porous structure. These extremely soft matrices with dynamic storage modulus in the range of 9-70 Pa were examined in 3D culture systems for HeLa cell culture in comparison to traditional 2D mode. They showed relatively low syneresis over time, especially when glycomicrogels with a high content of hydrophilic trehalose were used as building blocks. An incorporated pending trehalose composed of two α,α'-1,1'-linked d-glucose moieties was used with the intention of providing multivalent interactions with glucose transporters (GLUTs) expressed on the cell surface. A better cell viability was observed when a soft hydrogel with the highest content of trehalose and the lowest syneresis was used as a matrix compared to a 2D control assay.
Collapse
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| | - Sylwia Waśkiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44 100 Gliwice, Poland
| | - Anna Lalik
- Systems Engineering Group, Institute of Automatic Control, Silesian University of Technology, B. Krzywoustego 8, 44 100 Gliwice, Poland
| | - Sebastian Student
- Systems Engineering Group, Institute of Automatic Control, Silesian University of Technology, B. Krzywoustego 8, 44 100 Gliwice, Poland
| | - Tadeusz Bieg
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| |
Collapse
|
8
|
Wongin S, Waikakul S, Chotiyarnwong P, Siriwatwechakul W, Kino-Oka M, Kim MH, Viravaidya-Pasuwat K. Maintenance of human chondrogenic phenotype on a dendrimer-immobilized surface for an application of cell sheet engineering. BMC Biotechnol 2018. [PMID: 29540167 PMCID: PMC5853058 DOI: 10.1186/s12896-018-0426-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dedifferentiation of chondrocytes during cell expansion is one of the barriers in tissue construction for cartilage repair. To understand chondrocyte behavior and improve cell expansion in monolayer culture, this study investigated the effects of morphological changes and cellular aggregation on the maintenance of chondrogenic capacity by observing the expression patterns of chondrogenic (collagen type II and aggrecan) and dedifferentiation (collagen type I) markers. Primary human chondrocytes were cultured on either a polystyrene surface (PS) or a polyamidoamine dendrimer surface with a fifth-generation (G5) dendron structure to create a one-step process of cell expansion and the maintenance of chondrogenic activities prior to the construction of cell sheets. RESULTS During the first two passages (P0 - P2), the relative mRNA level of collagen type II decreased in all cultures, while that of collagen type I increased. Remarkably, the level of collagen type II was higher and aggrecan was retained in the chondrocytes, forming cell aggregates and showing some round-shaped cells with less production of stress fibers on the G5 surface compared to fibroblast-like chondrocytes with abundant stress fibers on the PS surface. The numbers of P2 chondrocytes on the G5 and PS surfaces were nearly the same and sufficient for construction of chondrocyte sheets using a temperature-responsive plate. Without a supporting material during cell sheet manipulation, chondrocyte sheets spontaneously detached and exhibited a honeycomb-like structure of stress fibers. Unlike the chondrocyte sheets constructed from cells on the PS surface, the chondrocyte sheets from cells on the G5 surface had higher chondrogenic activities, as evidenced by the high expression of chondrogenic markers and the low expression of dedifferentiation markers. CONCLUSIONS The one-step process of cell expansion and maintenance of chondrogenic activity could be obtained using the G5 surface. Human chondrocyte sheets were successfully constructed with high chondrogenic activity. These findings may lead to an alternative cultivation technique for human chondrocytes that offers high clinical potential in autologous chondrocyte implantation.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Saranatra Waikakul
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanwipa Siriwatwechakul
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand. .,Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
9
|
Wongin S, Waikakul S, Chotiyarnwong P, Siriwatwechakul W, Viravaidya-Pasuwat K. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets. Tissue Eng Part A 2018; 24:469-478. [DOI: 10.1089/ten.tea.2017.0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwipa Siriwatwechakul
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
10
|
Balta S, Aydogan C, Demir B, Geyik C, Ciftci M, Guler E, Odaci Demirkol D, Timur S, Yagci Y. Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sebila Balta
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Cansu Aydogan
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Caner Geyik
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
| | - Mustafa Ciftci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Emine Guler
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
- Ege Life Sciences (EGE-LS); Cigli 35620 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; Bornova 35100 Izmir Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Faculty of Science; Chemistry Department; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
11
|
Toda H, Yamamoto M, Uyama H, Tabata Y. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells. Acta Biomater 2017; 58:312-322. [PMID: 28300720 DOI: 10.1016/j.actbio.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
Abstract
The objective of this study is to design the manner of ephrinB2 immobilized onto polyacrylamide (PAAm) hydrogels with varied elasticity and evaluate the effect of hydrogels elasticity and the immobilized manner of ephrinB2 on the Runx2 expression of human mesenchymal stem cells (hMSC). The PAAm hydrogels were prepared by the radical polymerization of acrylamide (AAm), and N,N'-methylenebisacrylamide (BIS). By changing the BIS concentration, the elasticity of PAAm hydrogels changed from 1 to 70kPa. For the bio-specific immobilization of ephrinB2, a chimeric protein of ephrinB2 and Fc domain was immobilized onto protein A-conjugated PAAm hydrogels by making use of the bio-specific interaction between the Fc domain and protein A. When hMSC were cultured on the ephrinB2-immobilized PAAm hydrogels with varied elasticity, the morphology of hMSC was of cuboidal shape on the PAAm hydrogels immobilized with ephrinB2 compared with non-conjugated ones, irrespective of the hydrogels elasticity. The bio-specific immobilization of ephrinB2 enhanced the level of Runx2 expression. The expression level was significantly high for the hydrogels of 3.6 and 5.9kPa elasticity with bio-specific immobilization of ephrinB2 compared with other hydrogels with the same elasticity. The hydrogels showed a significantly down-regulated RhoA activity. It is concluded that the Runx2 expression of hMSC is synergistically influenced by the hydrogels elasticity and their immobilized manner of ephrinB2 immobilized. STATEMENT OF SIGNIFICANCE Differentiation fate of mesenchymal stem cells (MSC) is modified by biochemical and biophysical factors, such as elasticity and signal proteins. However, there are few experiments about combinations of them. In this study, to evaluate the synergistic effect of them on cell properties of MSC, we established to design the manner of Eph signal ligand, ephrinB2, immobilized onto polyacrylamide hydrogels with varied elasticity. The gene expression level of an osteogenic maker, Runx2, was enhanced by the immobilized manner, and significantly enhanced for the hydrogels of around 4kPa elasticity with bio-specific immobilization of ephrinB2. This is the novel report describing to demonstrate that the Runx2 expression of MSC is synergistically influenced by the hydrogels elasticity and their manner of ephrinB2 immobilized.
Collapse
|
12
|
Liang S, Yu S, Zhou N, Deng J, Gao C. Controlling the selective and directional migration of hepatocytes by a complementary density gradient of glycosylated hyperbranched polymers and poly(ethylene glycol) molecules. Acta Biomater 2017; 56:161-170. [PMID: 27998813 DOI: 10.1016/j.actbio.2016.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
Abstract
Repair and regeneration of defected tissues and organs depends strongly on the directional migration of targeted cells, for example, the enhancement of directional migration of hepatocytes could be helpful in liver regeneration and transplantation. Herein a complementary gradient of galactose-modified hyperbranched polymers (LA-HPMA) and poly(ethylene glycol) (PEG) molecules was designed and prepared on a same substrate. Characterizations of X-ray photoelectron spectrometry and quartz crystal microbalance with dissipation (QCM-d) demonstrated the unidirectional change in grafting density of LA-HPMA and PEG molecules, respectively. On the LA-HPMA/PEG complementary gradient surface, the human hepatoma (HepG2) cells showed preferential orientation and enhanced directional migration toward the region of lower PEG density and higher LA-HPMA density. By contrast, the mouse embryonic fibroblasts (NIH3T3) showed random migration irrelevant to the gradient. The success of the complementary gradient relies on the specific interaction between galactose and asialoglycoprotein receptor (ASGPR) expressed on HepG2 cells. STATEMENT OF SIGNIFICANCE.
Collapse
|
13
|
Trease C, Longman M, Augousti A, Foot P, Pierscionek B. Cell morphology and growth observation studies on novel, chemically unmodified and patterned polymer surfaces for advanced tissue culture applications. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes. Colloids Surf B Biointerfaces 2016; 145:309-318. [DOI: 10.1016/j.colsurfb.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023]
|
15
|
Toda H, Yamamoto M, Uyama H, Tabata Y. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture. Acta Biomater 2016; 29:215-227. [PMID: 26525116 DOI: 10.1016/j.actbio.2015.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/11/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. STATEMENT OF SIGNIFICANCE Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro.
Collapse
Affiliation(s)
- Hiroyuki Toda
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku Kyoto 606-8507, Japan
| | - Masaya Yamamoto
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku Kyoto 606-8507, Japan
| | - Hiroshi Uyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Moisenovich MM, Malyuchenko NV, Arkhipova AY, Kotlyarova MS, Davydova LI, Goncharenko AV, Agapova OI, Drutskaya MS, Bogush VG, Agapov II, Debabov VG, Kirpichnikov MP. Novel 3D-microcarriers from recombinant spidroin for regenerative medicine. DOKL BIOCHEM BIOPHYS 2015; 463:232-5. [PMID: 26335819 DOI: 10.1134/s1607672915040109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/12/2022]
Abstract
Microcarriers generated from recombinant spidroin 1F9 are suitable for use as an injection material. The microcarriers were a heterogeneous mixture of microgel particles ranging from 50 to 300 µm in size with the predominance of particles of 50-150 µm. The surface of these microparticles had a complex topography and ensured efficient cultivation of primary and immortalized fibroblasts. Intradermal injections of microgel suspensions into the area of full-thickness skin wounds did not lead to the development of acute inflammation in mice; instead, they accelerated the recovery of skin tissue and stimulated neurogenesis and angiogenesis.
Collapse
|
17
|
de Jong ER, Deloch N, Knoll W, Turrin CO, Majoral JP, Caminade AM, Köper I. Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). NEW J CHEM 2015. [DOI: 10.1039/c5nj00620a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendrimers having one dithiolane and ammonium or carboxylate functions have been synthesized for coating gold surfaces interacting with human osteoblasts.
Collapse
Affiliation(s)
- Edwin R. de Jong
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
- Université de Toulouse
| | - Nicole Deloch
- Max-Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Wolfgang Knoll
- Max-Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Austrian Institute of Technology
- 1220 Vienna
| | - Cédric-Olivier Turrin
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
- Université de Toulouse
| | - Jean-Pierre Majoral
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
- Université de Toulouse
| | - Anne-Marie Caminade
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
- Université de Toulouse
| | - Ingo Köper
- Max-Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Flinders Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
| |
Collapse
|
18
|
[6]-Gingerol-loaded cellulose acetate electrospun fibers as a topical carrier for controlled release. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1243-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Hupfeld J, Gorr IH, Schwald C, Beaucamp N, Wiechmann K, Kuentzer K, Huss R, Rieger B, Neubauer M, Wegmeyer H. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Biotechnol Bioeng 2014; 111:2290-302. [PMID: 24890974 DOI: 10.1002/bit.25281] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell therapy. Their therapeutic use requires extensive expansion to obtain a sufficiently high number of cells for clinical applications. State-of-the-art expansion systems, that is, primarily culture flask-based systems, are limited regarding scale-up, automation, and reproducibility. To overcome this bottleneck, microcarrier (MC)-based expansion processes have been developed. For the first time, MSCs from the perinatal sources umbilical cord (UC) and amniotic membrane (AM) were expanded on MCs. This study focuses on the comparison of flask- and Cytodex 1 MC-expanded MSCs by evaluating the influence of the expansion process on biological MSC characteristics. Furthermore, we tested the hypothesis to obtain more homogeneous MSC preparations by expanding cells on MCs in controlled large-scale bioreactors. MSCs were extensively characterized determining morphology, cell growth, surface marker expression, and functional properties such as differentiation capacity, secretion of paracrine factors, and gene expression. Based on their gene expression profile MSCs from different donors and sources clearly clustered in distinct groups solely depending on the expansion process-MC or flask culture. MC- and flask-expanded MSCs significantly differed from each other regarding surface markers and both paracrine factors and gene expression profiles. Furthermore, based on gene expression analysis, MC cultivation of MSCs in controlled bioreactor systems resulted in less heterogeneity between cells from different donors. In conclusion, MC-based MSC expansion in controlled bioreactors has the potential to reliably produce MSCs with altered characteristics and functions as compared to flask-expanded MSCs. These findings may be useful for the generation of MSCs with tailored properties for clinical applications.
Collapse
Affiliation(s)
- Julia Hupfeld
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Switching between self-renewal and lineage commitment of human induced pluripotent stem cells via cell–substrate and cell–cell interactions on a dendrimer-immobilized surface. Biomaterials 2014; 35:5670-8. [DOI: 10.1016/j.biomaterials.2014.03.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
|
21
|
Kim MH, Kino-oka M. Maintenance of undifferentiated state of human induced pluripotent stem cells through cytoskeleton-driven force acting to secreted fibronectin on a dendrimer-immobilized surface. J Biosci Bioeng 2014; 118:716-22. [PMID: 24947748 DOI: 10.1016/j.jbiosc.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023]
Abstract
Understanding of the fundamental mechanisms that govern adhesive properties of human induced pluripotent stem cells (hiPSCs) to culture environments provides surface design strategies for maintaining their undifferentiated state during cell expansion. Polyamidoamine dendrimer surface with first-generation (G1) with dendron structure was used for co-cultures of hiPSCs and SNL feeder cells that formed tightly packed compact hiPSC colonies, similar to those on a conventional gelatin-coated surface. hiPSCs passaged up to 10 times on the G1 surface maintained their undifferentiated state. Immunostaining and reverse transcriptase PCR analysis of fibronectin showed that the secreted fibronectin matrix from feeder cells on the G1 surface contributed to hiPSC attachment. Compared with cells on the gelatin-coated surface, F-actin and paxillin immunostaining revealed a well-organized network of actin stress fibers and focal adhesion formation at cell-substrate sites in hiPSC colonies on the G1 surface. E-cadherin expression levels on these surfaces were almost same, but paxillin and Rac1 expression levels on the G1 surface were significantly higher than those on the gelatin-coated surface. Zyxin showed prominent expression on the G1 surface at sites of focal adhesion and cell-cell contact in colonies, whereas zyxin expression on the gelatin-coated surface was not observed in regions of cell-cell contact. These findings indicate that transduction of mechanical stimuli through actin polymerization at sites of focal adhesion and cell-cell contact results in maintenance of undifferentiated hiPSC colonies on G1 surface. The G1 surface enables a substrate design based on the mechanical cues in the microenvironment from feeder cells to expand undifferentiated hiPSCs in long-term culture.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Kim MH, Ogawa Y, Yamada K, Taya M, Kino-oka M. Directed differentiation of human mesenchymal stem cells toward a cardiomyogenic fate commitment through formation of cell aggregates. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Pastorino L, Dellacasa E, Scaglione S, Giulianelli M, Sbrana F, Vassalli M, Ruggiero C. Oriented collagen nanocoatings for tissue engineering. Colloids Surf B Biointerfaces 2013; 114:372-8. [PMID: 24246194 DOI: 10.1016/j.colsurfb.2013.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.
Collapse
Affiliation(s)
- Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Elena Dellacasa
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Silvia Scaglione
- IEIIT-CNR, National Research Council, Via De Marini 6, 16149 Genoa, Italy.
| | - Massimo Giulianelli
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Francesca Sbrana
- IBF-CNR, National Research Council, Via De Marini 6, 16149 Genoa, Italy
| | - Massimo Vassalli
- IBF-CNR, National Research Council, Via De Marini 6, 16149 Genoa, Italy
| | - Carmelina Ruggiero
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| |
Collapse
|
24
|
Roberts MJ, Bhatt N, Voge CM, Meshot ER, Stegemann JP, Hart AJ. Self-assembly of suspended collagen films and their viability as cell culture substrates. J Mater Chem B 2013; 1:4711-4718. [DOI: 10.1039/c3tb20800a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J Biosci Bioeng 2013; 115:96-9. [DOI: 10.1016/j.jbiosc.2012.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/10/2012] [Accepted: 08/18/2012] [Indexed: 12/12/2022]
|
26
|
Zhang LL, Li HJ, Lu JH, Zhang YL, Cao S, Zhao XN, He ZB. Ti6Al4V coating for carbon/carbon composites synthesized by magnetron sputtering: microstructure and in-vitro
biotests. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.5192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei-Lei Zhang
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - He-Jun Li
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - Jin-Hua Lu
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - Yu-Lei Zhang
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - Sheng Cao
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - Xue-Ni Zhao
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| | - Zi-Bo He
- State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 China
| |
Collapse
|
27
|
Galli C, Piemontese M, Meikle ST, Santin M, Macaluso GM, Passeri G. Biomimetic coating with phosphoserine-tethered poly(epsilon-lysine) dendrons on titanium surfaces enhances Wnt and osteoblastic differentiation. Clin Oral Implants Res 2012; 25:e133-9. [DOI: 10.1111/clr.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Carlo Galli
- Department of Biotechnology; Biomedical and Translational Sciences, University of Parma; Parma Italy
| | - Marilina Piemontese
- Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Steven T. Meikle
- Brighton Studies in Tissue-mimicry and Aided Regeneration; School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton UK
| | - Matteo Santin
- Brighton Studies in Tissue-mimicry and Aided Regeneration; School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton UK
| | - Guido M. Macaluso
- Department of Biotechnology; Biomedical and Translational Sciences, University of Parma; Parma Italy
| | - Giovanni Passeri
- Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| |
Collapse
|
28
|
Tu Q, Yang Z, Zhu Y, Xiong K, Maitz MF, Wang J, Zhao Y, Huang N, Jin J, Lei Y. Effect of tissue specificity on the performance of extracellular matrix in improving endothelialization of cardiovascular implants. Tissue Eng Part A 2012; 19:91-102. [PMID: 22924620 DOI: 10.1089/ten.tea.2011.0372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural extracellular matrix (ECM) deposited in situ by cultured endothelial cells (ECs) has been proven effective in accelerating endothelialization of titanium (Ti) cardiovascular implants (CVIs) in our previous studies. In this study, the ECM deposited by smooth muscle cells (SMCs) was used in comparison to investigate the effects of tissue specificity of the ECM on the ability to accelerate endothelialization of CVIs. The results demonstrated that the ECM deposited by ECs and SMCs (EC-ECM, SMC-ECM, respectively) differed considerably in components and fibril morphology. Surface modification of Ti CVIs with both types of natural ECM was effective in improving their in vitro hemocompatibility and cytocompatibility simultaneously. However, the endothelialization of ECM-modified Ti CVIs in a canine model demonstrated a high tissue specificity of the ECM. Although the ECM deposited by SMCs (SMC-ECM) induced fewer platelet adhesion and sustained better growth and viability of ECs in vitro, its performance in accelerating in vivo endothelialization of Ti CVIs was extremely poor. In contrast, the ECM deposited by ECs (EC-ECM) led to complete endothelium formation in vivo.
Collapse
Affiliation(s)
- Qiufen Tu
- Key Laboratory of Advanced Technology of Materials, Education Ministry of China, Southwest Jiaotong University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Killops KL, Gupta N, Dimitriou MD, Lynd NA, Jung H, Tran H, Bang J, Campos LM. Nanopatterning Biomolecules by Block Copolymer Self-Assembly. ACS Macro Lett 2012; 1:758-763. [PMID: 35607099 DOI: 10.1021/mz300153k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fabrication of sub-100 nm features with bioactive molecules is a laborious and expensive process. To overcome these limitations, we present a modular strategy to create nanostructured substrates (ca. 25 nm features) using functional block copolymers (BCPs) based on poly(styrene-b-ethylene oxide) to controllably promote or inhibit cell adhesion. A single type of BCP was functionalized with a peptide, a perfluorinated moiety, and both compounds, to tune nanoscale phase separation and interactions with NIH3T3 fibroblast cells. The focal adhesion formation and morphology of the cells were observed to vary dramatically according to the functionality presented on the surface of the synthetic substrate. It is envisioned that these materials will be useful as substrates that mimic the extracellular matrix (ECM) given that the adhesion receptors of cells can recognize clustered motifs as small as 10 nm, and their spatial orientation can influence cellular responses.
Collapse
Affiliation(s)
- Kato L. Killops
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nalini Gupta
- Department
of Chemistry, Columbia University, New
York, New York 10027, United
States
| | - Michael D. Dimitriou
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nathaniel A. Lynd
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Hyunjung Jung
- Department of Chemical
and Biological
Engineering, Korea University, 136-713
Seoul, Republic of Korea
| | - Helen Tran
- Department
of Chemistry, Columbia University, New
York, New York 10027, United
States
| | - Joona Bang
- Department of Chemical
and Biological
Engineering, Korea University, 136-713
Seoul, Republic of Korea
| | - Luis M. Campos
- Department
of Chemistry, Columbia University, New
York, New York 10027, United
States
| |
Collapse
|
31
|
Embryonic Stem Cells Maintain an Undifferentiated State on Dendrimer-Immobilized Surface with d-Glucose Display. Polymers (Basel) 2011. [DOI: 10.3390/polym3042078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Lavenus S, Ricquier JC, Louarn G, Layrolle P. Cell interaction with nanopatterned surface of implants. Nanomedicine (Lond) 2010; 5:937-47. [PMID: 20735227 DOI: 10.2217/nnm.10.54] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Metals such as titanium and alloys are commonly used for manufacturing orthopedic and dental implants because their surface properties provide a biocompatible interface with peri-implant tissues. Strategies for modifying the nature of this interface frequently involve changes to the surface at the nanometer level, thereby affecting protein adsorption, cell-substrate interactions and tissue development. Recent methods to control these biological interactions at the nanometer scale on the surface of implants are reviewed. Future strategies to control peri-implant tissue healing are also discussed.
Collapse
Affiliation(s)
- Sandrine Lavenus
- Faculty of Medicine, Inserm, U957, LPRO, University of Nantes, 1 Rue Gaston Veil, 44042 Nantes cedex1, France
| | | | | | | |
Collapse
|
33
|
Truong WT, Su Y, Meijer JT, Thordarson P, Braet F. Self-Assembled Gels for Biomedical Applications. Chem Asian J 2010; 6:30-42. [DOI: 10.1002/asia.201000592] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Soo JC, Zhang J, He Q, Agarwal S, Li H, Zhang H, Chen P. Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integr Biol (Camb) 2010; 2:250-7. [DOI: 10.1039/c0ib00006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|