1
|
Gallego‐Murillo JS, Iacono G, van der Wielen LAM, van den Akker E, von Lindern M, Wahl SA. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors. Biotechnol Bioeng 2022; 119:3096-3116. [PMID: 35879812 PMCID: PMC9804173 DOI: 10.1002/bit.28193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 1012 RBC, which requires large scale production. Here, we report on the scale-up of cRBC production from static cultures of erythroblasts to 3 L stirred tank bioreactors, and identify the effect of operating conditions on the efficiency of the process. Oxygen requirement of proliferating erythroblasts (0.55-2.01 pg/cell/h) required sparging of air to maintain the dissolved oxygen concentration at the tested setpoint (2.88 mg O2 /L). Erythroblasts could be cultured at dissolved oxygen concentrations as low as 0.7 O2 mg/ml without negative impact on proliferation, viability or differentiation dynamics. Stirring speeds of up to 600 rpm supported erythroblast proliferation, while 1800 rpm led to a transient halt in growth and accelerated differentiation followed by a recovery after 5 days of culture. Erythroblasts differentiated in bioreactors, with final enucleation levels and hemoglobin content similar to parallel cultures under static conditions.
Collapse
Affiliation(s)
- Joan Sebastián Gallego‐Murillo
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands,Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
MeatableAlexander Fleminglaan 1,2613AX,DelftThe Netherlands
| | - Giulia Iacono
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Bernal Institute, Faculty of Science and EngineeringUniversity of LimerickLimerickRepublic of Ireland
| | - Emile van den Akker
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
Lehrstuhl Für BioverfahrenstechnikFriedrich‐Alexander Universität Erlangen‐NürnbergPaul‐Gordan‐Str. 3,91052,ErlangenGermany
| |
Collapse
|
2
|
Pellegrin S, Severn CE, Toye AM. Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica 2021; 106:2304-2311. [PMID: 34042406 PMCID: PMC8409035 DOI: 10.3324/haematol.2020.268847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice.
Collapse
Affiliation(s)
- Stephanie Pellegrin
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Charlotte E Severn
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol.
| |
Collapse
|
3
|
Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, Nakamura Y, Miharada K. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol 2021; 4:677. [PMID: 34083702 PMCID: PMC8175573 DOI: 10.1038/s42003-021-02202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Immortalized erythroid cell lines are expected to be a promising source of ex vivo manufactured red blood cells (RBCs), however the induction of enucleation in these cell lines is inefficient at present. We utilized an imaging-based high-throughput system to identify chemical compounds that trigger enucleation of human erythroid cell lines. Among >3,300 compounds, we identified multiple histone deacetylase inhibitors (HDACi) inducing enucleated cells from the cell line, although an increase in membrane fragility of enucleated cells was observed. Gene expression profiling revealed that HDACi treatment increased the expression of cytoskeletal genes, while an erythroid-specific cell membrane protein, SPTA1, was significantly down-regulated. Restoration of SPTA1 expression using CRISPR-activation partially rescued the fragility of cells and thereby improved the enucleation efficiency. Our observations provide a potential solution for the generation of mature cells from erythroid cell lines, contributing to the future realization of the use of immortalized cell lines for transfusion therapies. In an imaging-based screen of >3,300 compounds compounds, Soboleva et al identify HDAC inhibitors as mediators of erythroid cell enucleation. They further show that the erythroid-specific cell membrane protein, SPTA1, is downregulated in HDAC inhibited cells and that restoration of SPTA1 expression using CRISPR-activation partially rescues the fragility of cells, improving enucleation efficiency.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rita Silvério-Alves
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Guzniczak E, Otto O, Whyte G, Chandra T, Robertson NA, Willoughby N, Jimenez M, Bridle H. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration. Biotechnol Bioeng 2020; 117:2032-2045. [PMID: 32100873 PMCID: PMC7383897 DOI: 10.1002/bit.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Greifswald, Greifswald, Germany
| | - Graeme Whyte
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Neil A Robertson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Nik Willoughby
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Melanie Jimenez
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland
| | - Helen Bridle
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| |
Collapse
|
5
|
Generation of clinical-grade red blood cells from human umbilical cord blood mononuclear cells. Cell Tissue Res 2018; 375:437-449. [PMID: 30284087 DOI: 10.1007/s00441-018-2919-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 01/18/2023]
Abstract
A xeno-free method for ex vivo generation of red blood cells (RBCs) is attempted in order to replicate for large-scale production and clinical applications. An efficient milieu was formulated using injectable drugs substituting the animal-derived components in the culture medium. Unfractionated mononuclear cells isolated from human umbilical cord blood were used hypothesizing that the heterogeneous cell population could effectively contribute to erythroid cell generation. The strategy adopted includes a combination of erythropoietin and other injectable drugs under low oxygen levels, which resulted in an increase in the number of mature RBCs produced in vitro. The novelty in this study is the addition of supplements to the medium in a stage-specific manner for the differentiation of unfractionated umbilical cord blood mononuclear cells (MNCs) into erythropoietic lineage. The erythropoietic lineage was well established by day 21, wherein the mean cell count of RBCs was found to be 21.36 ± 0.9 × 108 and further confirmed by an upregulated expression of CD235a+ specific to RBCs. The rationale was to have a simple method to produce erythroid cells from umbilical cord blood isolates in vitro by mitigating the effects of multiple erythroid-activating agents and batch to batch variability.
Collapse
|
6
|
An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun 2017; 8:14750. [PMID: 28290447 PMCID: PMC5355882 DOI: 10.1038/ncomms14750] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture. The generation of a sustainable supply of erythroid progenitors is essential for the reliable production of an in vitro derived red blood cell clinical product. Here the authors immortalize early human erythroblasts to generate the first cell line capable of differentiation into functional adult reticulocytes.
Collapse
|
7
|
Lee E, Han SY, Choi HS, Chun B, Hwang B, Baek EJ. Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts. Tissue Eng Part A 2015; 21:817-28. [PMID: 25314917 DOI: 10.1089/ten.tea.2014.0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell-derived erythroid cells hold great potential for the treatment of blood-loss anemia and for erythropoiesis research; however, cultures using conventional flat plates or bioreactors have failed to show promising results. By mimicking the in vivo bone marrow (BM) environment in which most erythroid cells are physically aggregated, we show that a three-dimensional (3D) aggregate culture system facilitates erythroid cell maturation and red blood cell (RBC) production more effectively than two-dimensional high-density cell cultivation. Late erythroblasts (polychromatic or orthochromatic erythroblasts) were differentiated from cord blood CD34(+) cells over 15 days and then allowed to form tight aggregates at a minimum density of 1×10(7) cells/mL for 2-3 days. To scale up the cell culture and to make the media supply efficient throughout the cell aggregates, several macroporous microcarriers and porous scaffolds were applied to the 3D culture system. In comparison to control culture conditions, erythroid cells in 3D aggregates were significantly more differentiated toward RBCs with significantly reduced nuclear dysplasia. When 3D culture was performed inside macroporous microcarriers, the cell culture scale was increased and cells exhibited enhanced differentiation and enucleation. Microcarriers with a pore diameter of approximately 400 μm produced more mature cells than those with a smaller pore diameter. In addition, this aggregate culture method minimized the culture space and media volume required. In conclusion, a 3D aggregate culture system can be used to generate transfusable human erythrocytes at the terminal maturation stage, mimicking the in vivo BM microenvironment. Porous structures can efficiently maximize the culture scale, enabling large-scale production of RBCs. These results enhance our understanding of the importance of physical contact among late erythroblasts for their final maturation into RBCs.
Collapse
Affiliation(s)
- EunMi Lee
- 1 Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Prowse AB, Timmins NE, Yau TM, Li RK, Weisel RD, Keller G, Zandstra PW. Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Can J Cardiol 2014; 30:1335-49. [DOI: 10.1016/j.cjca.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/08/2023] Open
|
9
|
van Veen T, Hunt JA. Tissue engineering red blood cells: a therapeutic. J Tissue Eng Regen Med 2014; 9:760-70. [DOI: 10.1002/term.1885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Theun van Veen
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - John A. Hunt
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| |
Collapse
|
10
|
Li X, Wu Z, Fu X, Han W. How Far Are Stem-Cell-Derived Erythrocytes from the Clinical Arena? Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Zaid T, Frömmel C, Lun A, Moldenhauer A. Erythropoietin-stimulated endothelial cells support erythroid cell differentiation of CD34(+) haematopoietic progenitors. Vox Sang 2013; 105:253-8. [PMID: 23773054 DOI: 10.1111/vox.12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/22/2013] [Accepted: 03/20/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Endothelial cells provide a unique medium for the proliferation and white lineage differentiation of haematopoietic progenitor cells (HPC). Whether this quality can be exploited to facilitate the differentiation of erythroid precursors is not yet known. MATERIALS AND METHODS Haematopoietic progenitor cells derived from cord blood were cultured for 3 weeks in erythropoietin-stimulated supernatants with (n = 6) or without cyclosporine A (CSA, n = 6). Cell count, phenotype and morphology were assessed on a weekly basis, and the haemoglobin content was analysed. These cultures were compared with erythroid differentiation induced by cytokines only (n = 6). RESULTS Endothelial supernatants combined with CSA led to equivalent numbers of CD71(+) erythroblasts after 1 week as cytokines only. The purity of glycophorin-positive, CD45-negative cells was higher in cells generated in endothelial supernatants than in cytokine-based media. Additional prostaglandin E2 induced a change from fetal to adult haemoglobin. CONCLUSION For the generation of erythroblasts from HPC, endothelial supernatants are a simple and cost-effective alternative to culture conditions based on cytokines.
Collapse
Affiliation(s)
- T Zaid
- Institute for Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Bouhassira EE. Concise review: production of cultured red blood cells from stem cells. Stem Cells Transl Med 2012; 1:927-33. [PMID: 23283554 PMCID: PMC3659674 DOI: 10.5966/sctm.2012-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/04/2012] [Indexed: 01/11/2023] Open
Abstract
In the Western world, the volunteer-based collection system covers most transfusion needs, but transient shortages regularly develop and blood supplies are vulnerable to potentially major disruptions. The production of cultured red blood cells from stem cells is slowly emerging as a potential alternative. The various cell sources, the niche applications most likely to reach the clinic first, and some of the remaining technical issues are reviewed here.
Collapse
Affiliation(s)
- Eric E Bouhassira
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Klotz C, Aebischer T, Seeber F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. Int J Med Microbiol 2012; 302:203-9. [DOI: 10.1016/j.ijmm.2012.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Ivanović Z, Vlaski M. Production of hematopoietic cells from umbilical cord blood stem cells for transfusion purposes: Focus on ex vivo generation of red blood cells. SCRIPTA MEDICA 2012. [DOI: 10.5937/scriptamed1202099i] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
16
|
Abstract
Red blood cells, currently obtained from donors, represent the most common form of cell-based therapy. A better understanding of normal erythropoiesis is leading to improved multi-step protocols for the in vitro generation of fully mature red cells. The extensive in vitro expansion of embryonic erythroblasts and development of erythroid precursors as a potential transfusion product may help to deal with issues of scale and eventually find a place in the treatment of patients with acute and chronic anemias.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Tisch Cancer Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, N.Y. 10029, Tel: (212) 241-6974, ,
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, N.Y. 14642, Tel: (585) 275-5098, ,
| |
Collapse
|