1
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
2
|
Song Y, Lee YG, Ahn YS, Nguyen DT, Bae HJ. Utilization of bamboo as biorefinery feedstock: Co-production of xylo-oligosaccharide with succinic acid and lactic acid. BIORESOURCE TECHNOLOGY 2023; 372:128694. [PMID: 36731613 DOI: 10.1016/j.biortech.2023.128694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Herein, we investigated the possibility of co-producing xylo-oligosaccharides (XOSs) from bamboo, as value-added products, along with succinic and lactic acids, as platform chemicals. Xylan was extracted from bamboo using the alkali method under mild conditions. From xylan, XOSs were produced by partial enzymatic hydrolysis at a conversion rate of 83.9%, and all reaction conditions resulted in similar degrees of polymerization. Hydrogen peroxide-acetic acid (HPAC) pretreatment effectively removed lignin from NaOH-treated bamboo, and the enzymatic hydrolytic yield of NaOH and HPAC-treated bamboo was 84.3% of the theoretical yield. The production of succinic and lactic acids from the hydrolysate resulted in conversion rates of approximately 63.2% and 91.3% of the theoretical yield using Corynebacterium glutamicum Δldh and Actinobacillus succinogenes, respectively, under facultative anaerobic conditions. This study demonstrates that bamboo has a high potential to produce value-added products using a biorefinery process and is an alternative resource for compounds typically derived from petroleum.
Collapse
Affiliation(s)
- Younho Song
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yoon Gyo Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Young Sang Ahn
- Department of Forest Resources, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
3
|
da Cruz Filho IJ, de Souza TP, dos Anjos Santos CÁ, de Morais Araújo MA, de Oliveira Moraes Miranda JF, de Oliveira Queirós ME, Filho DJNC, da Conceição Alves de Lima A, Marques DSC, do Carmo Alves de Lima M. Xylans extracted from branches and leaves of Protium puncticulatum: antioxidant, cytotoxic, immunomodulatory, anticoagulant, antitumor, prebiotic activities and their structural characterization. 3 Biotech 2023; 13:93. [PMID: 36845077 PMCID: PMC9944590 DOI: 10.1007/s13205-023-03506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
This work aimed to isolate and characterize xylans from branches and leaves of Protium puncticulatum, in addition to evaluating its in vitro biological and prebiotic potential. The results showed that the chemical structure of the obtained polysaccharides is similar being classified as homoxylans. The xylans presented an amorphous structure, in addition to being thermally stable and presenting a molecular weight close to 36 g/mol. With regard to biological activities, it was observed that xylans were able to promote low antioxidant activity (< 50%) in the different assays evaluated. The xylans also showed no toxicity against normal cells, in addition to being able to stimulate cells of the immune system and showing promise as anticoagulant agents. In addition to presenting promising antitumor activity in vitro. In assays of emulsifying activity, xylans were able to emulsify lipids in percentages below 50%. Regarding in vitro prebiotic activity, xylans were able to stimulate and promote the growth of different probiotics. Therefore, this study, in addition to being a pioneer, contributes to the application of these polysaccharides in the biomedical and food areas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03506-1.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | - Thammyris Pires de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | | | | | | | | | | | | | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| |
Collapse
|
4
|
Recent advances in xylo-oligosaccharides production and applications: A comprehensive review and bibliometric analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Han D, Zulewska J, Xiong K, Yang Z. Synergy between oligosaccharides and probiotics: From metabolic properties to beneficial effects. Crit Rev Food Sci Nutr 2022; 64:4078-4100. [PMID: 36315042 DOI: 10.1080/10408398.2022.2139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.
Collapse
Affiliation(s)
- Dong Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
7
|
Zahid NI, Salim M, Liew CY, Boyd BJ, Hashim R. Structural investigation and steric stabilisation of Guerbet glycolipid-based cubosomes and hexosomes using triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Synthesis and physico-chemical characterization of quaternized and sulfated xylan-derivates with enhanced microbiological and antioxidant properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092655. [PMID: 35566004 PMCID: PMC9105624 DOI: 10.3390/molecules27092655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a β-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.
Collapse
|
10
|
Bouchat R, Vélard F, Audonnet S, Rioult D, Delvigne F, Rémond C, Rakotoarivonina H. Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior. Microb Cell Fact 2022; 21:39. [PMID: 35292016 PMCID: PMC8922903 DOI: 10.1186/s12934-022-01762-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background The microbial production of hemicellulasic cocktails is still a challenge for the biorefineries sector and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneity impairs the production capability of the whole microbial population. Results Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~ 75%) and Tx-xyn11 gene expression after 23.5 generations. During serial cultivations on xylan, flow cytometry analyses pointed out that two subpopulations, differing at their light-scattering properties, were present. An increase of the recurrence of the subpopulation exhibiting low forward scatter (FSC) signal was correlated with a progressive loss of xylanase activity over several generations. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. The subpopulation differences (growth and xylanase activity) were assessed during independent growth. The low-FSC subpopulation exhibited a lag phase of 10 h of cultivation (and xylanase activities from 0.15 ± 0.21 to 3.89 ± 0.14 IU/mL along the cultivation) and the high-FSC subpopulation exhibited a lag phase of 5 h (and xylanase activities from 0.52 ± 0.00 to 4.43 ± 0.61 over subcultivations). Serial cultivations on glucose, followed by a switch to xylan led to a ~ 1.5-fold to ~ 15-fold improvement of xylanase activity, suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. Conclusions Taken altogether, the data from this study point out that a cheating behavior is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation conditions between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01762-z.
Collapse
Affiliation(s)
- Romain Bouchat
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France.,Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, B140, 5030, Gembloux, Belgium
| | - Frédéric Vélard
- BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", Université de Reims Champagne Ardenne, 51097, Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne, 51097, Reims, France
| | - Frank Delvigne
- Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, B140, 5030, Gembloux, Belgium
| | - Caroline Rémond
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France
| | - Harivony Rakotoarivonina
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France.
| |
Collapse
|
11
|
Solomou K, Alyassin M, Angelis-Dimakis A, Campbell GM. Arabinoxylans: A new class of food ingredients arising from synergies with biorefining, and illustrating the nature of biorefinery engineering. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Bansal K, Webster D, Quadir M. Self-Assembled Nanostructures from Amphiphilic Sucrose-Soyates for Solubilizing Hydrophobic Guest Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2066-2075. [PMID: 35119869 DOI: 10.1021/acs.langmuir.1c03033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We studied self-assembly and colloidal properties of poly(ethylene glycol) (pEG) conjugated sucrose soyate polyols (PSSP). These molecular platforms were synthesized by covalently connecting PEGs of different molecular weights (Mn) (12 and 16 ethylene oxide units) to epoxidized sucrose soyate (ESS). The synthesized PSSP products showed amphiphilicity, reduced water surface tension, and exhibited critical Aggregation Concentration (CAC) within the range of 0.3-0.4 mg/mL. We observed that PSSP self-assembles in water in the form of nanoparticles without the need of any cosolvents. These nanoparticles exhibited number-average hydrodynamic diameter of 120 ± 8 nm with a polydispersity index (PDI) of <0.3, and negatively charged surfaces. We also found out that PSSP nanoparticles can encapsulate and homogeneously distribute a hydrophobic model compound, such as a phthalocyanine dye, Solvent Blue-70 (BL-70), on a metal surface. Collectively, our studies explored and demonstrated the possibility of molecular diversification of biobased starting materials to form amphiphilic nanoparticles with industrially relevant colloidal and surface properties.
Collapse
Affiliation(s)
- Karan Bansal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| | - Dean Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| |
Collapse
|
13
|
Rodríguez ES, Díaz-Arenas GL, Makart S, Ghosh D, Patti AF, Garnier G, Tanner J, Paull B. Determination of xylooligosaccharides produced from enzymatic hydrolysis of beechwood xylan using high-performance anion-exchange chromatography tandem mass spectrometry. J Chromatogr A 2022; 1666:462836. [DOI: 10.1016/j.chroma.2022.462836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
|
14
|
Xylan Hemicellulose: A Renewable Material with Potential Properties for Food Packaging Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su132413504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Xylan hemicelluloses are considered the second most abundant class of polysaccharides after cellulose which has good natural barrier properties necessary for foods packaging papers and films. Xylan exists today as a natural polymer, but its utilisation in packaging applications is limited and not sufficiently analysed. In this study, the performances of hardwood xylan hemicellulose in forming uniform films and as biopolymer for paper coatings were analysed. The xylan-coated paper and film samples were tested regarding their water, air, and water vapour permeability, water solubility, mechanical strength, and antimicrobial activity against pathogenic bacteria. Structural analyses of xylan hemicelluloses emphasised a high number of hydroxyl groups with high water affinity. This affects the functional properties of xylan-coated papers but can facilitate the chemical modification of xylan in order to improve their hydrophobic properties and extend their areas of application. The obtained results unveil a promising starting point for using this material in food packaging applications as a competitive and sustainable alternative to petroleum-based polymers.
Collapse
|
15
|
Song H, Zhao G, Zhang M, Bi R, Meng X, Song J, Wang B, Liu J, Liu L, Lyu Y, Zhang X. Optimization of the UDP-Xyl biocatalytic synthesis from Crassostrea gigas by orthogonal design method. Protein Expr Purif 2021; 190:106002. [PMID: 34666163 DOI: 10.1016/j.pep.2021.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
UDP-Xyl, a nucleotide sugar involved in the biosynthesis of various glycoconjugates, is difficult to obtain and quite expensive. Biocatalysis using a one-pot multi-enzyme cascade is one of the most valuable biotransformation processes widely used in the industry. Herein, two enzymes, UDP-glucose (UDP-Glc) dehydrogenase (CGIUGD) and UDP-Xyl synthase (CGIUXS) from the Pacific oyster Crassostrea gigas, which are coupled together for the biotransformation of UDP-Xyl, were characterized. The optimum pH was determined to be pH 9.0 for CGIUGD and pH 7.5 for CGIUXS. Both enzymes showed the highest activity at 37 °C. Neither enzyme is metal ion-dependent. On this basis, a single factor and orthogonal test were applied to optimize the condition of biotransformation of UDP-Xyl from UDP-Glc. Orthogonal design L9 (33) was conducted to optimize processing variables of enzyme amount, pH, and temperature. The conversion of UDP-Xyl was selected as an analysis indicator. Optimum variables were the ratio of CGIUGD to CGIUXS of 2:5, enzymatic pH of 8.0, and temperature of 37 °C, which is confirmed by three repeated validation experiments. The UDP-Xyl conversion was 69.921% in a 1 mL reaction mixture by optimized condition for 1 h. This is the first report for the biosynthesis of UDP-Xyl from oyster enzymes.
Collapse
Affiliation(s)
- Huibo Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Guihong Zhao
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Ruiming Bi
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Xinhui Meng
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Junliu Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Bo Wang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Jian Liu
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, NO 1, Xiwang Road, Yancheng, 224051, China.
| | - Xiaoyang Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, NO 1, Xiwang Road, Yancheng, 224051, China.
| |
Collapse
|
16
|
Rao J, Lv Z, Chen G, Hao X, Guan Y, Peng P, Su Z, Peng F. Constructing a Novel Xylan-Based Film with Flexibility, Transparency, and High Strength. Biomacromolecules 2021; 22:3810-3818. [PMID: 34347473 DOI: 10.1021/acs.biomac.1c00657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylan-based films have great potential to replace petroleum-based polymers used for packaging and coatings due to their excellent biocompatibility, biodegradability, and good gas barrier properties. However, fabricating a xylan-based film with flexible, transparent, water-proof, and excellent mechanical properties is an enormous challenge. Herein, we manufactured a series of degradable films with adjustable properties via solution-casting using a water-soluble xylan derivative. This is the first report of a pure xylan-based film with high performance, requiring no additives. The tensile strength of the xylan-based film could be controlled by adjusting the aldehyde content, which varied from 105.0 to 132.6 MPa. The smallest initial water contact angle of the xylan-based films is 93.26°, indicating that these films are hydrophobic. This work shows a simple and viable route toward manufacturing xylan-based films with high tensile strength, flexibility, and transparency, which can be used for packaging materials and coatings.
Collapse
Affiliation(s)
- Jun Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Lv
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Gegu Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ying Guan
- Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing 100102, China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. Curr Opin Biotechnol 2021; 73:51-60. [PMID: 34311175 DOI: 10.1016/j.copbio.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-dglucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
18
|
Kadowaki MAS, Briganti L, Evangelista DE, Echevarría-Poza A, Tryfona T, Pellegrini VOA, Nakayama DG, Dupree P, Polikarpov I. Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compost-derived consortium. Biotechnol Bioeng 2021; 118:4052-4064. [PMID: 34232504 DOI: 10.1002/bit.27880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/08/2022]
Abstract
The heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases. However, a recent analysis of a metatranscriptome library from a microbial lignocellulose community revealed GH11 enzymes capable of releasing solely xylobiose from xylan. Although initial biochemical studies clearly indicated their xylobiohydrolase mode of action, the structural features that drive this new activity still remained unclear. It was also not clear whether the enzymes acted on the reducing or nonreducing end of the substrate. Here, we solved the crystal structure of MetXyn11 in the apo and xylobiose-bound forms. The structure of MetXyn11 revealed the molecular features that explain the observed pattern on xylooligosaccharides released by this nonreducing end xylobiohydrolase.
Collapse
Affiliation(s)
- Marco A S Kadowaki
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,PhotoBioCatalysis-Biomass transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Briganti
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Danilo E Evangelista
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto de Criminalística de Andradina, Superintendência da Polícia Técnico Científica de São Paulo, Andradina, São Paulo, Brazil
| | | | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vanessa O A Pellegrini
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Darlan G Nakayama
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
19
|
Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, Terrapon N, Deuss PJ, Hakulinen N, Master ER, Jurak E. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:127. [PMID: 34059129 PMCID: PMC8165983 DOI: 10.1186/s13068-021-01976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/β-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Leena Penttinen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Martina Ikonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Léa Jaillot
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Régis Fauré
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Peter J Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130, Joensuu, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Edita Jurak
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
20
|
Wan Iskandar WFN, Salim M, Patrick M, Timimi BA, Zahid NI, Hashim R. Probing n-Octyl α-d-Glycosides Using Deuterated Water in the Lyotropic Phase by Deuterium NMR. J Phys Chem B 2021; 125:4393-4408. [PMID: 33885309 DOI: 10.1021/acs.jpcb.0c10629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lyotropic phase behavior of four common and easily accessible glycosides, n-octyl α-d-glycosides, namely, α-Glc-OC8, α-Man-OC8, α-Gal-OC8, and α-Xyl-OC8, was investigated. The presence of normal hexagonal (HI), bicontinuous cubic (VI), and lamellar (Lα) phases in α-Glc-OC8 and α-Man-OC8 including their phase diagrams in water reported previously was verified by deuterium nuclear magnetic resonance (2H NMR), via monitoring the D2O spectra. Additionally, the partial binary phase diagrams and the liquid crystal structures formed by α-Gal-OC8 and α-Xyl-OC8 in D2O were constructed and confirmed using small- and wide-angle X-ray scattering and 2H NMR. The average number of bound water molecules (nb) per headgroup in the Lα phase was determined by the systematic measurement of the quadrupolar splitting of D2O over a wide range of molar ratio values (glycoside/D2O), especially at high glucoside composition. The number of bound water molecules bound to the headgroup was found to be around 1.5-2.0 for glucoside, mannoside, and galactoside, all of which possesses four OH groups. In the case of xyloside, which has only three OH groups, the bound water content is ∼2.0. Our findings confirmed that the bound water content of all n-octyl α-d-glycosides studied is lower compared to the number of possible hydrogen bonding sites possibly due to the fact that most of the OH groups are involved in intralayer interaction that holds the lipid assembly together.
Collapse
Affiliation(s)
- Wan Farah Nasuha Wan Iskandar
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Malinda Salim
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Melonney Patrick
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bakir A Timimi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rauzah Hashim
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Liu Z, Shi E, Ma F, Jiang K. An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst. BIORESOURCE TECHNOLOGY 2021; 325:124698. [PMID: 33465645 DOI: 10.1016/j.biortech.2021.124698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This study aims to valorize wheat straw for xylose and glucose recovery using maleic acid in the pretreatment. The process conditions of maleic acid hydrolysis of wheat straw for xylose recovery were optimized by response surface methodology, through which the maximum xylose recovery of 77.12% versus minimum furfural yield of 1.61% were achieved using 70 g/L solid-to-liquid ratio and 0.1 mol/L maleic acid for 40 min at 150 °C. Moreover, 88.58% cellulose conversion was achieved by enzymatic hydrolysis of maleic acid-pretreated wheat straw. Results showed that maleic acid was an effective pretreatment solvent for sugars recovery: 19.88 g xylose and 30.89 g glucose were respectively obtained from 100 g wheat straw due to acidic and enzymatic hydrolysis, with only 0.37 g furfural produced. This study provides a strategy for hydrolyzing wheat straw to produce fermentable sugars with low amount of degradation product.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China
| | - Enze Shi
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China
| | - Feng Ma
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
22
|
Venkatesagowda B, Dekker RFH. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzyme Microb Technol 2021; 147:109780. [PMID: 33992403 DOI: 10.1016/j.enzmictec.2021.109780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Lignin is an abundant natural plant aromatic biopolymer containing various functional groups that can be exploited for activating lignin for potential commercial applications. Applications are hindered due to the presence of a high content of methyl/methoxyl groups that affects reactiveness. Various chemical and enzymatic approaches have been investigated to increase the functionality in transforming lignin. Among these is demethylation/demethoxylation, which increases the potential numbers of vicinal hydroxyl groups for applications as phenol-formaldehyde resins. Although the chemical route to lignin demethylation is well-studied, the biological route is still poorly explored. Bacteria and fungi have the ability to demethylate lignin and lignin-related compounds. Considering that appropriate microorganisms possess the biochemical machinery to demethylate lignin by cleaving O-methyl groups liberating methanol, and modify lignin by increasing the vicinal diol content that allows lignin to substitute for phenol in organic polymer syntheses. Certain bacteria through the actions of specific O-demethylases can modify various lignin-related compounds generating vicinal diols and liberating methanol or formaldehyde as end-products. The enzymes include: cytochrome P450-aryl-O-demethylase, monooxygenase, veratrate 3-O-demethylase, DDVA O-demethylase (LigX; lignin-related biphenyl 5,5'-dehydrodivanillate (DDVA)), vanillate O-demethylase, syringate O-demethylase, and tetrahydrofolate-dependent-O-demethylase. Although, the fungal counterparts have not been investigated in depth as in bacteria, O-demethylases, nevertheless, have been reported in demethylating various lignin substrates providing evidence of a fungal enzyme system. Few fungi appear to have the ability to secrete O-demethylases. The fungi can mediate lignin demethylation enzymatically (laccase, lignin peroxidase, manganese peroxidase, O-demethylase), or non-enzymatically in brown-rot fungi through the Fenton reaction. This review discusses details on the aspects of microbial (bacterial and fungal) demethylation of lignins and lignin-model compounds and provides evidence of enzymes identified as specific O-demethylases involved in demethylation.
Collapse
Affiliation(s)
- Balaji Venkatesagowda
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Robert F H Dekker
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada; Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
23
|
Perez-Arce J, Centeno-Pedrazo A, Labidi J, Ochoa-Gomez JR, Garcia-Suarez EJ. Lignin-Based Polyols with Controlled Microstructure by Cationic Ring Opening Polymerization. Polymers (Basel) 2021; 13:polym13040651. [PMID: 33671706 PMCID: PMC7926755 DOI: 10.3390/polym13040651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Lignin-based polyols (LBPs) with controlled microstructure were obtained by cationic ring opening polymerization (CROP) of oxiranes in an organosolv lignin (OL) tetrahydrofuran (THF) solution. The control on the microstructure and consequently on the properties of the LBPs such as hydroxyl number, average molecular weight, melting, crystallization and decomposition temperatures, are crucial to determine the performance and application of the derived-products. The influence of key parameters, for example, molar ratio between the oxirane and the hydroxyl groups content in OLO, initial OL concentration in THF, temperature, specific flow rate and oxirane nature has been investigated. LBPs with hydroxyl numbers from 35 to 217 mg KOH/g, apparent average Mw between 5517 and 52,900 g/mol and melting temperatures from −8.4 to 18.4 °C were obtained. The CROP procedure allows obtaining of tailor-made LBPs for specific applications in a very simple way, opening the way to introduce LBPs as a solid alternative to substitute currently used fossil-based polyols.
Collapse
Affiliation(s)
- Jonatan Perez-Arce
- TECNALIA, Basque Research and Technology Alliance (BRTA), Alava Technology Park, Leonardo da Vinci 11, 01510 Vitoria-Gasteiz, Spain; (J.P.-A.); (A.C.-P.)
| | - Ander Centeno-Pedrazo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Alava Technology Park, Leonardo da Vinci 11, 01510 Vitoria-Gasteiz, Spain; (J.P.-A.); (A.C.-P.)
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Jose R. Ochoa-Gomez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Alava Technology Park, Leonardo da Vinci 11, 01510 Vitoria-Gasteiz, Spain; (J.P.-A.); (A.C.-P.)
- Correspondence: (J.R.O.-G.); (E.J.G.-S.)
| | - Eduardo J. Garcia-Suarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Alava Technology Park, Leonardo da Vinci 11, 01510 Vitoria-Gasteiz, Spain; (J.P.-A.); (A.C.-P.)
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Correspondence: (J.R.O.-G.); (E.J.G.-S.)
| |
Collapse
|
24
|
Ozonolysis of wheat bran in subcritical water for enzymatic saccharification and polysaccharide recovery. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Cheng HN, Biswas A, Kim S, Alves CR, Furtado RF. Synthesis and Characterization of Hydrophobically Modified Xylans. Polymers (Basel) 2021; 13:291. [PMID: 33477583 PMCID: PMC7835788 DOI: 10.3390/polym13020291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Xylan is a major type of hemicellulose that has attracted a lot of research and development activities. It is often derivatized in order to improve its properties. In the literature, hydrophobic modification of polymers is often used to produce surfactant-like materials and associative thickeners. In this work, we have derivatized xylan with alkyl ketene dimer (AKD) and two types of alkenyl succinic anhydrides (ASAs). The xylan-AKD derivatives have been made at 90 °C, using dimethyl sulfoxide as solvent and 4-dimethylaminopyridine as promoter. Samples with degrees of substitution (DS) up to 0.006 have been produced. The xylan-ASA derivatives have been synthesized at 120 °C in dimethyl sulfoxide with DS up to 0.105-0.135. The structures of these products have been confirmed with NMR and FT-IR. These xylan derivatives increase the structural diversity of xylan and provide additional options for people seeking to use hydrophobically modified polysaccharides in their applications.
Collapse
Affiliation(s)
- Huai N. Cheng
- Southern Regional Research Center, USDA Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - Atanu Biswas
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA;
| | - Sanghoon Kim
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA;
| | - Carlucio R. Alves
- Chemistry Department, State University of Ceará, Silas Munguba Av. 1.700, Fortaleza, CE 60740-020, Brazil;
| | - Roselayne F. Furtado
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita 2270, Fortaleza, CE 60511-110, Brazil;
| |
Collapse
|
26
|
Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide-loaded and biodegradable xylan-based nanocarriers. Biopolymers 2020; 111:e23413. [PMID: 33306838 PMCID: PMC7816251 DOI: 10.1002/bip.23413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
The delivery of agrochemicals is typically achieved by the spraying of fossil-based polymer dispersions, which might accumulate in the soil and increase microplastic pollution. A potentially sustainable alternative is the use of biodegradable nano- or micro-formulations based on biopolymers, which can be degraded selectively by fungal enzymes to release encapsulated agrochemicals. To date, no hemicellulose nanocarriers for drug delivery in plants have been reported. Xylan is a renewable and abundant feedstock occurring naturally in high amounts in hemicellulose - a major component of the plant cell wall. Herein, xylan from corncobs was used to produce the first fungicide-loaded xylan-based nanocarriers by interfacial polyaddition in an inverse miniemulsion using toluene diisocyanate (TDI) as a crosslinking agent. The nanocarriers were redispersed in water and the aqueous dispersions were proven to be active in vitro against several pathogenic fungi, which are responsible for fungal plant diseases in horticulture or agriculture. Besides, empty xylan-based nanocarriers stimulated the growth of fungal mycelium, which indicated the degradation of xylan in the presence of the fungi, and underlined the degradation as a trigger to release a loaded agrochemical. This first example of crosslinked xylan-based nanocarriers expands the library of biodegradable and biobased nanocarriers for agrochemical release and might play a crucial role for future formulations in plant protection.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Luc Wetherbee
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Jochen Fischer
- IBWF gGmbHInstitute for Biotechnology and Drug ResearchKaiserslauternGermany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and TechnologyUniversiteit TwenteEnschedeThe Netherlands
| |
Collapse
|
27
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|
28
|
Application of Bamboo Plants in Nine Aspects. ScientificWorldJournal 2020; 2020:7284203. [PMID: 33061861 PMCID: PMC7555460 DOI: 10.1155/2020/7284203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Bamboo forests are undoubtedly one of the most abundant nontimber plants on Earth and cover a wide area of tropical and subtropical regions around the world. This amazing plant has unique rapid growth and can play an important role in protecting our planet from pollution and improving the soil. Bamboo can be used as a biofuel, food, and for architecture and construction applications and plays a large role in the local economy by creating job opportunities. The aim of this paper is to review the extraordinary tropical plant bamboo by explaining the mechanisms related to the growth and strength of bamboo and identifying ways to utilize bamboo in industry, employment, climate change mitigation, and soil erosion reduction.
Collapse
|
29
|
Choi MY, Shin KC, Ho TH, Park H, Nguyen DQ, Park YS, Kim DW, Oh DK, Kang LW. Fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi has a versatile TIM-barrel scaffold suitable for a sugar metabolizing biocatalyst. Int J Biol Macromol 2020; 163:1369-1374. [PMID: 32758598 DOI: 10.1016/j.ijbiomac.2020.07.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Xylan and pectin are major structural components of plant cell walls. There are two independent catabolic pathways for xylan and pectin. UxaE bridges these two pathways by reversibly epimerizing D-fructuronate and D-tagaturonate. The crystal structure of UxaE from Cohnella laeviribosi (ClUxaE) shows a core scaffold of TIM-barrel with a position-changing divalent metal cofactor. ClUxaE has the flexible metal-coordination loop to allow the metal shift and the extra domains to bind a phosphate ion in the active site, which are important for catalysis and substrate specificity. Elucidation of the structure and mechanism of ClUxaE will assist in understanding the catalytic mechanism of UxaE family members, which are useful for processing both xylan and pectin-derived carbohydrates for practical and industrial purposes, including the transformation of agricultural wastes into numerous valuable products.
Collapse
Affiliation(s)
- Moon Young Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Diem Quynh Nguyen
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
30
|
Athinarayanan J, Alshatwi AA, Subbarayan Periasamy V. Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydr Polym 2020; 235:115961. [DOI: 10.1016/j.carbpol.2020.115961] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/22/2023]
|
31
|
Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int J Biol Macromol 2020; 155:572-580. [PMID: 32246958 DOI: 10.1016/j.ijbiomac.2020.03.249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Xylanase is a versatile tool in the food, fiber biobleaching and biofuel industries. Here, to discover new enzyme with special properties, we cloned three xylanases (Xyn11A, Xyn11B, and Xyn11C) by mining the genome of the xylanase producing fungus strain Fusarium sp. 21, biochemically characterized these enzyme and explored their potential application in juice processing. Both Xyn11A and Xyn11B had an optimal pH of 6.0 and optimal temperature of 45 °C, and retained >90% of the residual activity at pH range of 5-10.5 for 24 h. Xyn11C displayed the maximum activity at pH 5.0 and 45 °C and outstanding pH stability with a minimal loss of activity in the pH range of 2.0-10.5. These three xylanases displayed a strong specificity towards beechwood and corncob xylan, with no activity for other substrates. Xyn11A showed much a higher activity against corncob xylan, while Xyn11B and Xyn11C presented higher activities against beechwood xylan. Xyn11A catalyzed the hydrolysis of beechwood xylan with a Km of 4.25 ± 0.29 mg·mL-1 and kcat/Km of 30.34 ± 0.65 mL·s-1·mg-1, while the hydrolysis of corncob xylan had Km and kcat/Km values of 14.73 ± 1.43 mg·mL-1and 26.48 ± 0.11 mL·s-1·mg-1, respectively. Xyn11B and Xyn11C hydrolyzed beechwood xylan with Km of 9.8 ± 0.69 mg·mL-1, and 4.89 ± 0.38 mg·mL-1and kcat/Km values of 45.07 ± 1.66 mL-1·mg-1, and 26.95 ± 0.67 mL·s-1·mg-1, respectively. Beechwood xylan hydrolysates catalyzed by these three xylanases contained xylobiose, xylotriose and xylooligosaccharides (XOS). The clarification of orange juice was improved when treated with these three xylanases. Conclusively, the desirable pH stability and substrate specificity make Xyn11A, Xyn11B and Xyn11C have high potential for application in fiber biobleaching, wine and fruit juice clarification, as well as probiotic XOS production.
Collapse
|
32
|
Qin G, Gao Y, Wen P, Liang G, Zhao P, Dong B, Tang S, Shekh K. Evaluation of the genotoxicity and teratogenicity of xylan using different model approaches. Drug Chem Toxicol 2020; 45:340-346. [PMID: 32228093 DOI: 10.1080/01480545.2020.1745226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Xylan is the second most abundant polysaccharide group in plants and has a wide variety of food and pharmaceutical applications. However, little information on the safety assessment of extracted xylan as dietary supplement is available. As part of a comprehensive toxicological assessment, this study examined the potential toxicity of xylan extracted from sugarcane bagasse by three genotoxicity studies (Ames test, in vivo mice bone marrow micronucleus test, and mice sperm abnormality test) and a teratogenicity study in rats. In the Ames test, xylan showed no mutagenic activity on histidine dependent strains of Salmonella typhimurium at concentrations up to 5000 μg/plate; results of the in vivo mice bone marrow micronucleus test and mice sperm abnormality test indicated no significant effect on sperm morphology and micronucleus rate of polychromatic erythrocytes in mice at doses up to 5 g/kg body weight. In the teratogenicity study, a total of 60 pregnant rats were exposed to 10, 5, and 2.5% xylan in diet, from gestation days 7 to 16, and the no-observed-adverse-effect levels (NOAEL) of xylan was determined to be 9.8 g/kg body weight. The safe dose of xylan for human was estimated to be 98 mg/kg/day (i.e., 6.86 g/day for a 70-kg person), using a 100-fold safety factor. Taken together, results of this study indicated that xylan is practically nontoxic in terms of potential dietary consumption by humans in food or as a dietary supplement.
Collapse
Affiliation(s)
- Guangqiu Qin
- Department of Toxicology, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Yuqiu Gao
- Department of Toxicology, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Pingjing Wen
- Department of Toxicology, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Guiqiang Liang
- Department of Toxicology, Guangxi University of Chinese Medicine, Nanning, China
| | - Peng Zhao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Baiqing Dong
- Department of Toxicology, Guangxi University of Chinese Medicine, Nanning, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kamran Shekh
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
33
|
Abstract
D- and most L-enantiomers of carbohydrates and carbohydrate-containing compounds occur naturally in plants and other organisms. These enantiomers play many important roles in plants including building up biomass, defense against pathogens, herbivory, abiotic stress, and plant nutrition. Carbohydrate enantiomers are also precursors of many plant compounds that significantly contribute to plant aroma. Microorganisms, insects, and other animals utilize both types of carbohydrate enantiomers, but their biomass and excrements are dominated by D-enantiomers. The aim of this work was to review the current knowledge about carbohydrate enantiomers in ecosystems with respect to both their metabolism in plants and occurrence in soils, and to identify critical knowledge gaps and directions for future research. Knowledge about the significance of D- versus L-enantiomers of carbohydrates in soils is rare. Determining the mechanism of genetic regulation of D- and L-carbohydrate metabolism in plants with respect to pathogen and pest control and ecosystem interactions represent the knowledge gaps and a direction for future research.
Collapse
|
34
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
35
|
Glucuronoarabinoxylans and other cell wall polysaccharides from shoots of Guadua chacoensis obtained by extraction in different conditions. Carbohydr Polym 2019; 226:115313. [DOI: 10.1016/j.carbpol.2019.115313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
|
36
|
Saika A, Fukuoka T, Mikome S, Kondo Y, Habe H, Morita T. Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source. J Biosci Bioeng 2019; 129:428-434. [PMID: 31732259 DOI: 10.1016/j.jbiosc.2019.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Xylose, the main component of xylan, is the second most abundant sugar in nature after glucose. Consequently, xylose represents an attractive feedstock for the production of value-added compounds such as biosurfactants (BSs), which are produced by various bacteria and yeasts. In this study, we screened and isolated yeast strains that synthesize BSs using xylose as the sole carbon source. We applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to screen for BS-producing yeasts and isolated eight strains as the liamocin producers. Two of the eight strains, AS37 and SK25, were identified as Aureobasidium melanogenum, which is known as black yeasts, by based on 26S ribosomal RNA gene sequences. Both strains produced a wide variety of liamocin structures from not only xylose but also glucose and sucrose. According to the MALDI-TOF MS analysis, signals corresponding to sodium ion adducts of di-, tri-, tetra-, penta- and hexa-acylated C6-liamocins and di-, tri- and tetra-acylated C5-liamocins were detected. In addition, their mono-acetylated form was also detected. The dominant sugar component of liamocins produced by strains AS37 and SK25 is mannitol as estimated by HPLC analysis. This is the first report to describe the screening of liamocins-producing yeasts using xylose as the sole carbon source.
Collapse
Affiliation(s)
- Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shuntaro Mikome
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yukishige Kondo
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
37
|
β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides. Int J Mol Sci 2019; 20:ijms20225524. [PMID: 31698702 PMCID: PMC6887791 DOI: 10.3390/ijms20225524] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Xylan, a prominent component of cellulosic biomass, has a high potential for degradation into reducing sugars, and subsequent conversion into bioethanol. This process requires a range of xylanolytic enzymes. Among them, β-xylosidases are crucial, because they hydrolyze more glycosidic bonds than any of the other xylanolytic enzymes. They also enhance the efficiency of the process by degrading xylooligosaccharides, which are potent inhibitors of other hemicellulose-/xylan-converting enzymes. On the other hand, the β-xylosidase itself is also inhibited by monosaccharides that may be generated in high concentrations during the saccharification process. Structurally, β-xylosidases are diverse enzymes with different substrate specificities and enzyme mechanisms. Here, we review the structural diversity and catalytic mechanisms of β-xylosidases, and discuss their inhibition by monosaccharides.
Collapse
|
38
|
Nieto-Domínguez M, Martínez-Fernández JA, de Toro BF, Méndez-Líter JA, Cañada FJ, Prieto A, de Eugenio LI, Martínez MJ. Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microb Cell Fact 2019; 18:174. [PMID: 31601204 PMCID: PMC6788083 DOI: 10.1186/s12934-019-1223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - José Alberto Martínez-Fernández
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
39
|
Stepnov AA, Fredriksen L, Steen IH, Stokke R, Eijsink VGH. Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field. PLoS One 2019; 14:e0222216. [PMID: 31491027 PMCID: PMC6731012 DOI: 10.1371/journal.pone.0222216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
A novel GH9 cellulase (AMOR_GH9A) was discovered by sequence-based mining of a unique metagenomic dataset collected at the Jan Mayen hydrothermal vent field. AMOR_GH9A comprises a signal peptide, a catalytic domain and a CBM3 cellulose-binding module. AMOR_GH9A is an exceptionally stable enzyme with a temperature optimum around 100°C and an apparent melting temperature of 105°C. The novel cellulase retains 64% of its activity after 4 hours of incubation at 95°C. The closest characterized homolog of AMOR_GH9A is TfCel9A, a processive endocellulase from the model thermophilic bacterium Thermobifida fusca (64.2% sequence identity). Direct comparison of AMOR_GH9A and TfCel9A revealed that AMOR_GH9A possesses higher activity on soluble and amorphous substrates (phosphoric acid swollen cellulose, konjac glucomannan) and has an ability to hydrolyse xylan that is lacking in TfCel9A.
Collapse
Affiliation(s)
- Anton A. Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, Ås, Norway
| | - Lasse Fredriksen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, Ås, Norway
| | - Ida H. Steen
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
40
|
Cellulose Nanofibril (CNF) Films and Xylan from Hot Water Extracted Birch Kraft Pulps. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. After the extraction, the pulps were oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and fibrillated in a high-pressure microfluidizer. Compared to CNF from bleached kraft pulp, the CNF dispersions obtained from water-extracted pulps were less viscous and generally contained a higher amount of microfiber fragments, although smaller in size. In all cases, however, smooth and highly transparent films were produced from the CNF dispersions after the addition of sorbitol as plasticizer. The CNF films made from water-extracted pulps showed a lower tensile strength and ductility, probably due to their lower xylan content, but the stiffness was only reduced by the presence of lignin. Interestingly, the CNF films from water-extracted bleached pulps were less hydrophilic, and their water vapour permeability was reduced up to 25%. Therefore, hot water extraction of bleached birch kraft pulp could be used to produce CNF films with improved barrier properties for food packaging, while obtaining a high-purity xylan stream for other high-value applications.
Collapse
|
41
|
Xian L, Li Z, Tang AX, Qin YM, Li QY, Liu HB, Liu YY. A novel neutral and thermophilic endoxylanase from Streptomyces ipomoeae efficiently produced xylobiose from agricultural and forestry residues. BIORESOURCE TECHNOLOGY 2019; 285:121293. [PMID: 30999191 DOI: 10.1016/j.biortech.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Endoxylanases capable of producing high ratios of xylobiose from agricultural and forestry residues in neutral and high temperature conditions are attractive for the prebiotic and alternative sweetener industries. In this study, a putative glycosyl hydrolase gene from Streptomyces ipomoeae was cloned and expressed in Escherichia coli. The recombinant enzyme, named as SipoEnXyn10A, hydrolyzed beechwood xylan in endo-action mode releasing xylobiose as its main end product. It was most active at pH 6.5 and 75-80 °C and showed remarkable stability at 65 °C. The xylobiose yield from 10 g corncob and moso bamboo reached 1.123 ± 0.021 and 0.229 ± 0.005 g, respectively, at pH 6.5 and 70 °C, whichwas higher than other reports using the same material. Moreover, high ratios of xylobiose in the xylose-based product of about 85% were obtained from corncob, moso bamboo sawdust, cassava stem and Chinese fir sawdust. These results demonstrated that SipoEnXyn10A has potential for industrial application.
Collapse
Affiliation(s)
- Liang Xian
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Yi-Min Qin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Qing-Yun Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China.
| |
Collapse
|
42
|
Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY, Kang YH, Kang DH, De Zoysa M, Marasinghe SD, Oh C. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb Cell Fact 2019; 18:122. [PMID: 31286972 PMCID: PMC6615230 DOI: 10.1186/s12934-019-1169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic sequencing of the marine bacterium Ochrovirga pacifica. RESULTS The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 (DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold. CONCLUSION Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and hemicellulose-like complex substrates.
Collapse
Affiliation(s)
- Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Young-Kyung Kwon
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Do-Hyung Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
43
|
Spasojevic D, Prokopijevic M, Prodanovic O, Zelenovic N, Polovic N, Radotic K, Prodanovic R. Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation. Macromol Res 2019. [DOI: 10.1007/s13233-019-7111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
de Freitas C, Carmona E, Brienzo M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100184] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Antiproliferative xylan from corn cobs induces apoptosis in tumor cells. Carbohydr Polym 2019; 210:245-253. [DOI: 10.1016/j.carbpol.2019.01.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/01/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
|
46
|
Kundu D, Banerjee T. Carboxymethyl Cellulose-Xylan Hydrogel: Synthesis, Characterization, and in Vitro Release of Vitamin B 12. ACS OMEGA 2019; 4:4793-4803. [PMID: 31459663 PMCID: PMC6648921 DOI: 10.1021/acsomega.8b03671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 05/31/2023]
Abstract
The current work reports the synthesis of carboxymethyl cellulose (CMC) and xylan-based homopolymerized as well as copolymerized hydrogels using an ethylene glycol diglycidyl ether cross-linker in alkaline medium. The hydrogels are physically characterized by the swelling ratio and gel fraction. The morphological observation of hydrogels reveals the porous structure for the copolymerized gels. The rheological behavior of the gels elaborates that the copolymerized CMC-xylan gel synthesized in a 1:1 molar ratio has superior strain-bearing ability and possesses the shortest gelation temperature and time. Vitamin B12 here is used as the model vitamin to be loaded in the hydrogels and subsequent studies involving the in vitro release in artificial gastric fluid (AGF, pH = 1.2), artificial intestinal fluid (AIF, pH = 6.8), and phosphate-buffered saline (PBS, pH = 7.4). The synthesized gels show a cumulative release of 19-28% in AGF, 80-88% in AIF, and 93-98% in PBS, independently. Further, the highest cumulative release of 93-99% is recorded for all gels when in vitro release is performed in successive buffers, that is, first in AGF, followed by AIF and PBS.
Collapse
|
47
|
Fouquet T, Sato H, Nakamichi Y, Matsushika A, Inoue H. Electrospray multistage mass spectrometry in the negative ion mode for the unambiguous molecular and structural characterization of acidic hydrolysates from 4-O-methylglucuronoxylan generated by endoxylanases. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:213-221. [PMID: 30597672 DOI: 10.1002/jms.4321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
A rapid analytical methodology is proposed to answer the two questions about the molecular and structural features of the acidic xylo-oligosaccharides (XOSs) formed upon the enzymatic hydrolysis of 4-O-methylglucuronoxylan. The shortest acidic XOSs carrying a methylglucuronic acid moiety and the possible distribution of larger products (molecular feature) are instantly found by electrospray ionization mass spectrometry (ESI-MS) in the negative ion mode, which filters the unwanted neutral XOS. The acidic moiety is then unambiguously localized along the xylose backbone (structural feature) by ESI-MSn in the negative ion mode via the selection/activation/dissociation of the product ions formed upon the one-way and stepwise glycosidic bond cleavage at the reducing end. Using the shortest acidic XOS with a known shape generated by glycoside hydrolase family (GH) 10 and GH11 xylanases as a proof of principle, pairs of diagnostic ions are proposed to instantly interpret the MSn fingerprints and localize the acidic moiety along the xylose chain of the activated ion. The original structure of the acidic XOS is then reconstructed by adding as many xylose units at the reducing end as MSn steps. Relying on pairs of ions, the methodology is robust enough to highlight the presence of isomeric products. Mass spectra reported in the present article will be conveniently used as reference data for the forthcoming analysis of acidic XOS generated by new classes of enzymes using this multistage mass spectrometry methodology.
Collapse
Affiliation(s)
- Thierry Fouquet
- Polymer Chemistry Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki, Japan
| | - Hiroaki Sato
- Polymer Chemistry Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki, Japan
| | - Yusuke Nakamichi
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Akinori Matsushika
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Hiroyuki Inoue
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| |
Collapse
|
48
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
49
|
Kishani S, Escalante A, Toriz G, Vilaplana F, Gatenholm P, Hansson P, Wagberg L. Experimental and Theoretical Evaluation of the Solubility/Insolubility of Spruce Xylan (Arabino Glucuronoxylan). Biomacromolecules 2019; 20:1263-1270. [DOI: 10.1021/acs.biomac.8b01686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saina Kishani
- School of Chemical Science and Engineering, Fibre and Polymer Technology, Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Alfredo Escalante
- Wood, Cellulose
and Paper Research Department, Universidad de Guadalajara, Guadalajara Jalisco Mexico
| | - Guillermo Toriz
- Wood, Cellulose
and Paper Research Department, Universidad de Guadalajara, Guadalajara Jalisco Mexico
- WWSC, Chalmers University of Technology, Gothenburg, Sweden
| | - Francisco Vilaplana
- Wallenberg Wood Science Centre (WWSC), Teknikringen 56-58, SE-10044 Stockholm, Sweden
- School of Biotechnology, Division of Glycoscience, Royal Institute of Technology, Albanova University Centre, SE-10691 Stockholm, Sweden
| | - Paul Gatenholm
- Chemical Biological Engineering/Biopolymer, Chalmers University of Technology, Goteborg, Sweden
- WWSC, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Hansson
- Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala, Sweden
| | - Lars Wagberg
- School of Chemical Science and Engineering, Fibre and Polymer Technology, Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), Teknikringen 56-58, SE-10044 Stockholm, Sweden
| |
Collapse
|
50
|
Rosselgong J, Chemin M, Almada CC, Hemery G, Guigner JM, Chollet G, Labat G, Da Silva Perez D, Ham-Pichavant F, Grau E, Grelier S, Lecommandoux S, Cramail H. Synthesis and Self-Assembly of Xylan-Based Amphiphiles: From Bio-Based Vesicles to Antifungal Properties. Biomacromolecules 2018; 20:118-129. [DOI: 10.1021/acs.biomac.8b01210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julien Rosselgong
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Maud Chemin
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Cédric Cabral Almada
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Gauvin Hemery
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universities - UPMC
University Paris 06, UMR CNRS 7590, MNHN, IRD UR 206, 75252 Paris cedex 05, France
| | - Guillaume Chollet
- ITERG, 11 rue Gaspard Monge, Parc Industriel, Pessac cedex, F-33600, France
| | - Gilles Labat
- Institut technologique FCBA, FCBA, 10 rue Galilée, Champs-sur-Marne, F-77420, France
| | | | - Frédérique Ham-Pichavant
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Etienne Grau
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Stéphane Grelier
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Sébastien Lecommandoux
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Henri Cramail
- CNRS, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
- Univ. Bordeaux, LCPO, UMR 5629, 16 avenue Pey Berland, Pessac, F-33600, France
| |
Collapse
|