1
|
Otur Ç, Kurt-Kızıldoğan A. Global regulator AdpA directly binds to tunicamycin gene cluster and negatively regulates tunicamycin biosynthesis in Streptomyces clavuligerus. World J Microbiol Biotechnol 2024; 40:360. [PMID: 39433609 DOI: 10.1007/s11274-024-04160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Since a transcriptional regulator has yet to be identified within the tunicamycin biosynthetic gene cluster in Streptomyces clavuligerus, we conducted a comprehensive investigation by focusing on the possible function of the pleiotropic regulator AdpA on tunicamycin. The genes encoding early steps of tunicamycin biosynthesis were significantly upregulated in S. clavuligerus ΔadpA. At the same time, they were downregulated in adpA overexpressed strain as shown by RNA-sequencing (RNA-seq) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis. The tunicamycin gene cluster's co-transcription pattern was understood by reverse transcriptase polymerase chain reaction (RT-PCR). Our Electrophoretic Mobility Shift Assay (EMSA) data clearly showed AdpA's binding to the upstream sequence of the tunA gene, asserting its regulatory control. In addition to its direct negative regulation of tunicamycin biosynthesis, AdpA operates at a global level by orchestrating various regulatory genes in S. clavuligerus, such as wblA, whiB, bldM, arpA, brp, and adsA involved in morphological differentiation and secondary metabolite biosynthesis as depicted in RNA-seq data. This study represents a significant milestone by unveiling the AdpA regulator's pathway-specific and global regulatory effect in S. clavuligerus.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Atakum, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Atakum, Samsun, 55139, Türkiye.
| |
Collapse
|
2
|
Barik K, Arya PK, Singh AK, Kumar A. Potential therapeutic targets for combating Mycoplasma genitalium. 3 Biotech 2023; 13:9. [PMID: 36532859 PMCID: PMC9755450 DOI: 10.1007/s13205-022-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium (M. genitalium) has emerged as a sexually transmitted infection (STI) all over the world in the last three decades. It has been identified as a cause of male urethritis, and there is now evidence that it also causes cervicitis and pelvic inflammatory disease in women. However, the precise role of M. genitalium in diseases such as pelvic inflammatory disease, and infertility is unknown, and more research is required. It is a slow-growing organism, and with the advent of the nucleic acid amplification test (NAAT), more studies are being conducted and knowledge about the pathogenicity of this organism is being elucidated. The accumulation of data has improved our understanding of the pathogen and its role in disease transmission. Despite the widespread use of single-dose azithromycin in the sexual health field, M. genitalium is known to rapidly develop antibiotic resistance. As a result, the media frequently refer to this pathogen as the "new STI superbug." Despite their rarity, antibiotics available today have serious side effects. As the cure rates for first-line antimicrobials have decreased, it is now a challenge to determine the effective antimicrobial therapy. In this review, we summarise recent M. genitalium research and investigate potential therapeutic targets for combating this pathogen.
Collapse
Affiliation(s)
- Krishnendu Barik
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Praffulla Kumar Arya
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Anil Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| |
Collapse
|
3
|
Bernal FA, Hammann P, Kloss F. Natural products in antibiotic development: is the success story over? Curr Opin Biotechnol 2022; 78:102783. [PMID: 36088735 DOI: 10.1016/j.copbio.2022.102783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Natural product (NP)-based antibiotics have been exploited for more than eighty years and continue saving uncountable lives every year. However, antimicrobial R&D is inadequate to counteract antimicrobial resistance. The majority of marketed antibiotics are inspired by NP classes that were discovered more than 50 years ago. With the advent of advanced genomic approaches, cultivation methods, and modern analytical techniques, NP discovery holds promise that there are way more powerful antibiotic scaffolds to be discovered. However, the currently lean antibiotic R&D pipeline shows a clear trend away from NP-based programs and innovative compounds are also rare in early stages. Within this review, we give an overview of the current NP antibiotic development pipeline, elaborate constraints the field is facing, and suggest measures to streamline NP-based antibiotic discovery. It is unlikely that NPs have lost significance, but reinforcement of discovery will require more targeted efforts and support to revitalize this established source.
Collapse
Affiliation(s)
- Freddy A Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| |
Collapse
|
4
|
Huang Y, Zou K, Qing T, Feng B, Zhang P. Metagenomics and metatranscriptomics analyses of antibiotic synthesis in activated sludge. ENVIRONMENTAL RESEARCH 2022; 213:113741. [PMID: 35750126 DOI: 10.1016/j.envres.2022.113741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The generic of antibiotics is considered to be a main reason for the generation of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). However, little has been reported about the antibiotic biosynthesis by activated sludge. In this study, the distribution and expression of antibiotic biosynthetic genes (ABGs) in the floc sludge and biofilm from two WWTPs were deciphered using metagenomics and metatranscriptomics. The results showed that 2% of the community were in general well-linked to antibiotic production, indicating a non-negligible antibiotic synthetic ability of WWTPs. 93 ABGs belonging to 26 antibiotics were determined, among which aminoglycosides, β-lactams, ansamycins, peptides, macrolides were majority. The relative abundances of detected ABGs had a large interval, ranging from 0.000006% to 0.042%. The predominant antibiotic types of synthetic genes with higher relative expression levels were monobactams, penicillin & cephalosporins and streptomycin, primarily belonging to β-lactams and aminoglycosides. The hypothetical synthetic pathways of streptomycin synthesis and penicillin & cephalosporin synthesis were proposed. And the coexistence of ABGs and ARGs for these two antibiotics was also pronounced in activated sludge from meta-omics data. These findings for the first time demonstrated the antibiotic synthetic potential in activated sludges, revealing new sources of antibiotics and resistance genes in WWTPs, and thereby aggravating environmental pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
5
|
An integrative-omics analysis of an industrial clavulanic acid-overproducing Streptomyces clavuligerus. Appl Microbiol Biotechnol 2022; 106:6139-6156. [PMID: 35945361 DOI: 10.1007/s00253-022-12098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Clavulanic acid (CA) is a clinically important secondary metabolite used to treat infectious diseases. We aimed to decipher complex regulatory mechanisms acting in CA biosynthesis by analyzing transcriptome- and proteome-wide alterations in an industrial CA overproducer Streptomyces clavuligerus strain, namely DEPA and its wild-type counterpart NRRL3585. A total of 924 differentially expressed genes (DEGs) and 271 differentially produced proteins (DPPs) were obtained by RNA-seq and nanoLC-MS/MS analyses, respectively. In particular, CA biosynthetic genes, namely, car (cad), cas2, oat2, pah, bls, ceas2, orf12, and claR, a cluster situated regulatory (CSR) gene, were significantly upregulated as shown by RNA-seq. Enzymes of clavam biosynthesis were downregulated considerably in the DEPA strain, while the genes involved in the arginine biosynthesis, one of the precursors of CA pathway, were overexpressed. However, the biosynthesis of the other CA precursor, glyceraldehyde-3-phosphate (G3P), was not affected. CA overproduction in the DEPA strain was correlated with BldD, BldG, BldM, and BldN (AdsA) overrepresentation. In addition, TetR, WhiB, and Xre family transcriptional regulators were shown to be significantly overrepresented. Several uncharacterized/unknown proteins differentially expressed in the DEPA strain await further studies for functional characterization. Correlation analysis indicated an acceptable degree of consistency between the transcriptome and proteome data. The study represents the first integrative-omics analysis in a CA overproducer S. clavuligerus strain, providing insights into the critical control points and potential rational engineering targets for a purposeful increase of CA yields in strain improvement. KEY POINTS: ∙ Transcriptome and proteome-wide alterations in industrial CA overproducer strain DEPA ∙ An acceptable degree of consistency between the transcriptome and proteome data ∙ New targets to be exploited for rational engineering.
Collapse
|
6
|
Ramzan R, Virk MS, Chen F. The ABCT31 Transporter Regulates the Export System of Phenylacetic Acid as a Side-Chain Precursor of Penicillin G in Monascus ruber M7. Front Microbiol 2022; 13:915721. [PMID: 35966689 PMCID: PMC9370074 DOI: 10.3389/fmicb.2022.915721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of penicillin G (PG) is compartmentalized, and the transportation of the end and intermediate products, and substrates (precursors) such as L-cysteine (L-Cys), L-valine (L-Val) and phenylacetic acid (PAA) requires traversing membrane barriers. However, the transportation system of PAA as a side chain of PG are unclear yet. To discover ABC transporters (ABCTs) involved in the transportation of PAA, the expression levels of 38 ABCT genes in the genome of Monascus ruber M7, culturing with and without PAA, were examined, and found that one abct gene, namely abct31, was considerably up-regulated with PAA, indicating that abct31 may be relative with PAA transportation. Furthermore the disruption of abct31 was carried out, and the effects of two PG substrate's amino acids (L-Cys and L-Val), PAA and some other weak acids on the morphologies and production of secondary metabolites (SMs) of Δabct31 and M. ruber M7, were performed through feeding experiments. The results revealed that L-Cys, L-Val and PAA substantially impacted the morphologies and SMs production of Δabct31 and M. ruber M7. The UPLC-MS/MS analysis findings demonstrated that Δabct31 did not interrupt the synthesis of PG in M. ruber M7. According to the results, it suggests that abct31 is involved in the resistance and detoxification of the weak acids, including the PAA in M. ruber M7.
Collapse
Affiliation(s)
- Rabia Ramzan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
7
|
Song S, Jiang Y, Chen R, Su W, Liang W, Yang D, Li J, Zhang W, Gao S, Yuan B, Qu G, Sun Z. Whole-cell Biotransformation of Penicillin G by a Three-enzyme Co-expression System with Engineered Deacetoxycephalosporin C Synthase. Chembiochem 2022; 23:e202200179. [PMID: 35384232 DOI: 10.1002/cbic.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) catalyzes the tranformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) in dependence on 2-oxoglutarate (2OG). However, the low activity of DAOCS and the expense of 2OG restricted the practical application in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases. The resulting mutants showed 25~58% increase in activity compared to the template. The dominant DAOCS variants were then embeded into a three-enzyme co-expression system, consisting of a catalase and a L-glutamic oxidase for the generation of 2OG, to convert penicillin G into G-7-ADCA in E. coli . The engineered whole-cell enzyme cascade was applied on an up scaled reaction, exhibiting a yield of G-7-ADCA up to 39.21 mM (14.6 g·L -1 ) with a conversion of 78.42 mol%. This work highlights the potential of the integrated whole-cell system that may inspire further research on green and efficient production of 7-ADCA.
Collapse
Affiliation(s)
- Shiyi Song
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ruidong Chen
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wencheng Su
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| | - Weinan Liang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, CHINA
| | - Jincheng Li
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Shushan Gao
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, National Enyzme Engineering Lab, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| |
Collapse
|
8
|
Ruiz‐Villafán B, Cruz‐Bautista R, Manzo‐Ruiz M, Passari AK, Villarreal‐Gómez K, Rodríguez‐Sanoja R, Sánchez S. Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microb Biotechnol 2022; 15:1058-1072. [PMID: 33675560 PMCID: PMC8966007 DOI: 10.1111/1751-7915.13791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022] Open
Abstract
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram-positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.
Collapse
Affiliation(s)
- Beatriz Ruiz‐Villafán
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Rodrigo Cruz‐Bautista
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Monserrat Manzo‐Ruiz
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Ajit Kumar Passari
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Karen Villarreal‐Gómez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Romina Rodríguez‐Sanoja
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Sergio Sánchez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| |
Collapse
|
9
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
10
|
Tu H, Zhang B, Zhang X, Zhao C, Li L, Wang J, Chen Z, Wang P, Li Z. Magnetic thermosensitive polymer composite carrier with target spacing for enhancing immobilized enzyme performance. Enzyme Microb Technol 2021; 150:109896. [PMID: 34489019 DOI: 10.1016/j.enzmictec.2021.109896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 01/09/2023]
Abstract
A novel magnetic thermosensitive polymer composite carrier with target spacing was developed. In this strategy, thermosensitive polymer grafted on magnetic Fe3O4 for enhancing immobilized penicillin G acylase (PGA) performance and introduce immobilized target spacing into magnetic carriers for the first time. Fe3O4 nanoparticles were synthesized by a reverse microemulsion method. The modifier used was the silane coupling agent γ-methylacryloxypropyl trimethoxysilane (KH570) and then reacting with a reversible-adaptive fragmentation chain transfer (RAFT) reagent, 2-cyano-2-propyldodecyl trithiocarbonate (CPDTC). The thermo-sensitive nanoparticle-composite carrier of Fe3O4-grafted-poly N, N-diethyl acrylamide-block-poly β-Hydroxyethyl methacrylate-block-random copolymer of glycidyl methacrylate and methyl methacrylate (Fe3O4-g-PDEA-b-PHEMA-b-P(MMA-co-GMA)) were synthesized by RAFT polymerization technique that used N, N-diethyl acrylamide (DEA), β-Hydroxyethyl methacrylate (HEMA), Glycidyl methacrylate (GMA) and Methyl methacrylate (MMA) as monomer, then which were employed as functional carriers for the immobilization of PGA. Within the carrier, the epoxy group of GMA segment was a target immobilization site for PGA and the introduction of MMA reflected the target space of immobilized PGA to improve catalytic activity and catalytic activity recovery rate of the immobilized PGA. Characterizations demonstrated that the triblock copolymers grafted Fe3O4 nanoparticles were successfully fabricated by the structure design. Besides, under these circumstances the enzyme activity (EA), enzyme loading capacity (ELC) and catalytic activity recovery ration (CAR) reached 31235 U/g, 128.39 mg/g and 93.32 %, respectively. The catalytic activity of immobilized PGA maintained 87.4 % of initial value and the recovery ratio (R) of immobilized PGA reached 96.22 % after recycling 12 times. Furthermore, the immobilized PGA exhibited advantages of low temperature homogeneous catalysis and magnetic separation, which indicated broad application prospects in the biocatalysts' field.
Collapse
Affiliation(s)
- Hongyi Tu
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Boyuan Zhang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiayun Zhang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Chunli Zhao
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lin Li
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianbin Wang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Zhenbin Chen
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Pingbo Wang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
11
|
Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering (Basel) 2021; 8:103. [PMID: 34436106 PMCID: PMC8389198 DOI: 10.3390/bioengineering8080103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.
Collapse
Affiliation(s)
| | | | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Rigoberto Ríos-Estepa
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Medellín 050010, Colombia;
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| |
Collapse
|
12
|
Fatoba AJ, Okpeku M, Adeleke MA. Subtractive Genomics Approach for Identification of Novel Therapeutic Drug Targets in Mycoplasma genitalium. Pathogens 2021; 10:pathogens10080921. [PMID: 34451385 PMCID: PMC8402164 DOI: 10.3390/pathogens10080921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Mycoplasma genitalium infection is a sexually transmitted infection that causes urethritis, cervicitis, and pelvic inflammatory disease (PID) in men and women. The global rise in antimicrobial resistance against recommended antibiotics for the treatment of M. genitalium infection has triggered the need to explore novel drug targets against this pathogen. The application of a bioinformatics approach through subtractive genomics has proven highly instrumental in predicting novel therapeutic targets against a pathogen. This study aimed to identify essential and non-homologous proteins with unique metabolic pathways in the pathogen that could serve as novel drug targets. Based on this, a manual comparison of the metabolic pathways of M. genitalium and the human host was done, generating nine pathogen-specific metabolic pathways. Additionally, the analysis of the whole proteome of M. genitalium using different bioinformatics databases generated 21 essential, non-homologous, and cytoplasmic proteins involved in nine pathogen-specific metabolic pathways. The further screening of these 21 cytoplasmic proteins in the DrugBank database generated 13 druggable proteins, which showed similarity with FDA-approved and experimental small-molecule drugs. A total of seven proteins that are involved in seven different pathogen-specific metabolic pathways were finally selected as novel putative drug targets after further analysis. Therefore, these proposed drug targets could aid in the design of potent drugs that may inhibit the functionality of these pathogen-specific metabolic pathways and, as such, lead to the eradication of this pathogen.
Collapse
|
13
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs - A pilot-study. BMC Microbiol 2021; 21:212. [PMID: 34266385 PMCID: PMC8283913 DOI: 10.1186/s12866-021-02260-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background A high carriage rate of methicillin-resistant Staphylococcus aureus with the mecC gene (mecC-MRSA) has been described among Wild European hedgehogs (Europeaus erineaus). Due to this frequent occurrence, it has been suggested that hedgehogs could be a natural reservoir for mecC-MRSA. However, the reason why hedgehogs carry mecC-MRSA remains unknown, but it has been hypothesized that mecC-MRSA could have evolved on the skin of hedgehogs due to the co-occurrence with antibiotic producing dermatophytes. The aim of this pilot-study was therefore to investigate if hedgehogs in Sweden carry Trichophyton spp. and to provide evidence that these dermatophytes are able to produce penicillin or similar substances. In addition, the study aimed to identify if dermatophytes co-occurred with mecC-MRSA. Methods Samples were collected from hedgehogs (Europeaus erineaus) that were euthanized or died of natural causes. All samples were screened for dermatophytes and mecC-MRSA using selective cultivation methods. Suspected isolates were characterized using PCR-based methods, genome sequencing and bioinformatic analyses. Identification of penicillin was performed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Results In total 23 hedgehogs were investigated, and it was shown that two carried Trichophyton erinacei producing benzyl-penicillin, and that these hedgehogs also carried mecC-MRSA. The study also showed that 60% of the hedgehogs carried mecC-MRSA. Conclusion The pilot-study demonstrated that Trichophyton erinacei, isolated from Swedish hedgehogs, can produce benzylpenicillin and that these benzylpenicillin-producing T. erinacei co-occurred with mecC-MRSA. The study also reconfirmed the high occurrence of mecC-MRSA among hedgehogs.
Collapse
|
15
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Ünsaldı E, Kurt-Kızıldoğan A, Özcan S, Becher D, Voigt B, Aktaş C, Özcengiz G. Proteomic analysis of a hom-disrupted, cephamycin C overproducing Streptomyces clavuligerus. Protein Pept Lett 2021; 28:205-220. [PMID: 32707026 DOI: 10.2174/0929866527666200723163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Servet Özcan
- Department of Biology, Erciyes University, Kayseri 38280, Turkey
| | - Dörte Becher
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Birgit Voigt
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Caner Aktaş
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
17
|
Rozhkova AM, Kislitsin VY. CRISPR/Cas Genome Editing in Filamentous Fungi. BIOCHEMISTRY (MOSCOW) 2021; 86:S120-S139. [PMID: 33827404 DOI: 10.1134/s0006297921140091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.
Collapse
Affiliation(s)
- Aleksandra M Rozhkova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Valeriy Yu Kislitsin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
18
|
Wang C, Xiao F, Chen Q, Wang S, Zhou J, Wu Z. A two-dimensional photonic crystal hydrogel biosensor for colorimetric detection of penicillin G and penicillinase inhibitors. Analyst 2021; 146:502-508. [PMID: 33210667 DOI: 10.1039/d0an01946a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple penicillinase functionalized two-dimensional photonic crystal hydrogel (2DPPCH) biosensor was developed for colorimetric detection of penicillin G and penicillinase inhibitors. The penicillinase can specifically recognize penicillin G and catalyze it to produce penicilloic acid, which decreases the pH of the hydrogel microenvironment and shrinks the pH-sensitive hydrogel. The particle spacing decrease of the 2D photonic crystal array induced by the hydrogel shrinkage further causes a blue-shift in the diffraction wavelength. While the hydrolysis reaction is repressed upon treatment with clavulanate potassium (a kind of penicillinase inhibitor), no significant change in the diffraction wavelength is found. The detection of targets can be achieved by measuring the Debye diffraction ring diameter or observing the structural color change in the visible region. The lowest detectable concentrations for penicillin G and clavulanate potassium are 1 μM and 0.1 μM, respectively. Moreover, the 2DPPCH is proved to exhibit high selectivity and an excellent regeneration property, and it shows satisfactory performance for penicillin G analysis in real water samples.
Collapse
Affiliation(s)
- Changping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | |
Collapse
|
19
|
Iacovelli R, Mózsik L, Bovenberg RA, Driessen AJ. Identification of a conserved N-terminal domain in the first module of ACV synthetases. Microbiologyopen 2021; 10:e1145. [PMID: 33449449 PMCID: PMC7884236 DOI: 10.1002/mbo3.1145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase (ACVS) is a trimodular nonribosomal peptide synthetase (NRPS) that provides the peptide precursor for the synthesis of β-lactams. The enzyme has been extensively characterized in terms of tripeptide formation and substrate specificity. The first module is highly specific and is the only NRPS unit known to recruit and activate the substrate l-α-aminoadipic acid, which is coupled to the α-amino group of l-cysteine through an unusual peptide bond, involving its δ-carboxyl group. Here we carried out an in-depth investigation on the architecture of the first module of the ACVS enzymes from the fungus Penicillium rubens and the bacterium Nocardia lactamdurans. Bioinformatic analyses revealed the presence of a previously unidentified domain at the N-terminus which is structurally related to condensation domains, but smaller in size. Deletion variants of both enzymes were generated to investigate the potential impact on penicillin biosynthesis in vivo and in vitro. The data indicate that the N-terminal domain is important for catalysis.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - László Mózsik
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Roel A.L. Bovenberg
- Synthetic Biology and Cell EngineeringGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- DSM Biotechnology CentreDelftThe Netherlands
| | - Arnold J.M. Driessen
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
Iacovelli R, Zwahlen RD, Bovenberg RAL, Driessen AJM. Biochemical characterization of the Nocardia lactamdurans ACV synthetase. PLoS One 2020; 15:e0231290. [PMID: 32275728 PMCID: PMC7147772 DOI: 10.1371/journal.pone.0231290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
The L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS) is a nonribosomal peptide synthetase (NRPS) that fulfills a crucial role in the synthesis of β-lactams. Although some of the enzymological aspects of this enzyme have been elucidated, its large size, at over 400 kDa, has hampered heterologous expression and stable purification attempts. Here we have successfully overexpressed the Nocardia lactamdurans ACVS in E. coli HM0079. The protein was purified to homogeneity and characterized for tripeptide formation with a focus on the substrate specificity of the three modules. The first L-α-aminoadipic acid-activating module is highly specific, whereas the modules for L-cysteine and L-valine are more promiscuous. Engineering of the first module of ACVS confirmed the strict specificity observed towards its substrate, which can be understood in terms of the non-canonical peptide bond position.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Reto D. Zwahlen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- DSM Biotechnology Centre, Delft, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
de Barros AC, Santos EFQ, Rodrigues DS, Giordano RLC, de Pádua TF. Hydrophobic Adsorption Followed by Desorption with Ethanol-Water for Recovery of Penicillin G from Fermentation Broth. ACS OMEGA 2020; 5:7316-7325. [PMID: 32280873 PMCID: PMC7144136 DOI: 10.1021/acsomega.9b04175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The hydrophobic adsorption is an alternative to traditional organic solvent extraction for the recovery and purification of Penicillin G (PenG). However, there is a lack of information concerning the effect of process variables and technical feasibility while balancing product degradation. After assessing the integrity of PenG under different conditions, Amberlite XAD-4 was selected from among three different adsorbents. During the batch process using only 0.05 gXAD-4/mLmedium, the adsorption yield increased from 36% at pH 6 to 44% at pH 4. More than 90% of the antibiotic was captured from the fermentation broth using 0.083 gXAD-4/mLmedium in a 45 min batch performed at pH 4 and 4 °C. Moreover, there was no PenG degradation. The desorption conditions were evaluated, and 95% of the antibiotic could be recovered in only one batch using water-ethanol, which is an unexplored PenG desorption process. The results showed selective adsorption, indicating that the process can also be useful for purification purposes. Hydrophobic adsorption with ethanol desorption is efficient, scalable, and green and could be used in place of traditional methods or in extractive fermentation.
Collapse
Affiliation(s)
- André
N. C. de Barros
- Graduate
Program in Chemical Engineering, Federal
University of São Carlos, P.O. Box 676, São
Carlos, São Paulo 13565-905, Brazil
| | - Emanoela F. Q. Santos
- Graduate
Program in Chemical Engineering, Federal
University of São Carlos, P.O. Box 676, São
Carlos, São Paulo 13565-905, Brazil
| | - Dasciana S. Rodrigues
- Graduate
Program in Chemical Engineering, Federal
University of São Carlos, P.O. Box 676, São
Carlos, São Paulo 13565-905, Brazil
| | - Raquel L. C. Giordano
- Graduate
Program in Chemical Engineering, Federal
University of São Carlos, P.O. Box 676, São
Carlos, São Paulo 13565-905, Brazil
- Chemical
Engineering Department, Federal University
of São Carlos, P.O. Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Thiago F. de Pádua
- Chemical
Engineering Department, Federal University
of São Carlos, P.O. Box 676, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
23
|
Issakhanian L, Behzadi P. Antimicrobial Agents and Urinary Tract Infections. Curr Pharm Des 2020; 25:1409-1423. [PMID: 31218955 DOI: 10.2174/1381612825999190619130216] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Urinary Tract Infections (UTIs); second-ranking infectious diseases are regarded as a significant global health care problem. The UTIs annually cost tens of millions of dollars for governments worldwide. The main reason behind these costs is incorrect or indefinite treatment. There are a wide range of gram-negative and grampositive bacteria which may cause UTIs in males and females, children and adults. Among gram-negative bacteria, some members of Enterobacteriaceae such as Escherichia coli (E.coli) strains have significant contribution in UTIs. Uropathogenic E.coli (UPEC) strains are recognized as typical bacterial agents for UTIs. Thus, sharp and accurate diagnostic tools are needed for detection and identification of the microbial causative agents of UTIs. In parallel with the utilization of suitable diagnostic methods-to reduce the number of UTIs, effective and definite treatment procedures are needed. Therefore, the prescription of accurate, specific and effective antibiotics and drugs may lead to a definite treatment. However, there are many cases related to UTIs which can be relapsed. Due to a diversity of opportunistic and pathogenic causative microbial agents of UTIs, the treatment procedures should be achieved by the related antimicrobial agents. In this review, common and effective antimicrobial agents which are often prescribed for UTIs caused by UPEC will be discussed. Moreover, we will have a sharp look at their (antimicrobials) molecular treatment mechanisms.
Collapse
Affiliation(s)
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Ying YM, Li L, Yu HF, Xu YL, Huang L, Mao W, Tong CP, Zhang ZD, Zhan ZJ, Zhang Y. Induced production of a new polyketide in Penicillium sp. HS-11 by chemical epigenetic manipulation. Nat Prod Res 2020; 35:3446-3451. [PMID: 31899961 DOI: 10.1080/14786419.2019.1709190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chemical investigation into the culture broth of the plant endophyte Penicillium sp. HS-11 in the modified Martin's medium supplemented with subemylanilide hydroxamic acid (SAHA), a well-known histone deacetylase (HDACs) inhibitor, led to the isolation and identification of two induced products 4-epipenicillone B (1) and (R)-(+)-chrysogine (2). 4-epipenicillone B (1) was obtained as a new compound whose structure was elucidated by comprehensive spectroscopic methods including 1 D/2D NMR, HRESMS, and quantum chemistry calculations including DFT GIAO 13C NMR and ECD calculation. Acquisition of 4-epipenicillone B (1) enriched the chemical diversities of fungal natural products possessing a tricyclo [5.3.1.03,8] undecane skeleton. The cytotoxic activity of 1 was also evaluated.
Collapse
Affiliation(s)
- You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ling Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hang-Fei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China.,Department of Quality Management, Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd, Hangzhou, P. R. China
| | - Wei Mao
- Department of Quality Management, Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd, Hangzhou, P. R. China
| | - Cui-Ping Tong
- Department of Quality Management, Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd, Hangzhou, P. R. China
| | - Zhi-Dong Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yun Zhang
- Department of Quality Management, Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd, Hangzhou, P. R. China
| |
Collapse
|
25
|
Chen C, Liu J, Duan C, Pan Y, Liu G. Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum. Fungal Genet Biol 2020; 134:103279. [DOI: 10.1016/j.fgb.2019.103279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
|
26
|
Homologous expression of lysA encoding diaminopimelic acid (DAP) decarboxylase reveals increased antibiotic production in Streptomyces clavuligerus. Braz J Microbiol 2019; 51:547-556. [PMID: 31833007 DOI: 10.1007/s42770-019-00202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022] Open
Abstract
lysA gene encoding meso-diaminopimelic acid (DAP) decarboxylase enzyme that catalyzes L-lysine biosynthesis in the aspartate pathway in Streptomyces clavuligerus was overexpressed, and its effects on cephamycin C (CephC), clavulanic acid (CA), and tunicamycin productions were investigated. Multicopy expression of lysA gene under the control of glpF promoter (glpFp) in S. clavuligerus pCOlysA led to higher expression levels ranging from 2- to 6-fold increase at both lysA gene and CephC biosynthetic gene cluster at T36 and T48 of TSBG fermentation. These results accorded well with CephC production. Thus, 1.86- and 3.14-fold higher volumetric as well as 1.26- and 1.71-fold increased specific CephC yields were recorded in S. clavuligerus pCOlysA in comparison with the wild-type and its control strain, respectively, at 48th h. Increasing the expression of lysA provided 4.3 times more tunicamycin yields in the recombinant strain. These findings suggested that lysA overexpression in S. clavuligerus made the strain more productive for CephC and tunicamycin. The results also supported the presence of complex interactions among antibiotic biosynthesis pathways in S. clavuligerus.
Collapse
|
27
|
Harnessing microbial metabolomics for industrial applications. World J Microbiol Biotechnol 2019; 36:1. [DOI: 10.1007/s11274-019-2775-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
28
|
Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 2019; 59:65-70. [DOI: 10.1016/j.copbio.2019.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 02/02/2023]
|
29
|
Genetic Modification of mfsT Gene Stimulating the Putative Penicillin Production in Monascus ruber M7 and Exhibiting the Sensitivity towards Precursor Amino Acids of Penicillin Pathway. Microorganisms 2019; 7:microorganisms7100390. [PMID: 31554331 PMCID: PMC6843564 DOI: 10.3390/microorganisms7100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 01/09/2023] Open
Abstract
The biosynthesis of penicillin G (PG) is compartmentalized, which forces penicillin and its intermediates to cross the membrane barriers. Although many aspects around the penicillin intermediates traffic system remain unclosed, the transmembrane transporter protein involvement has been only predicted. In the present work, detection of PG and isopenicillin N (IPN) in Monascus ruber M7 was performed and functions of mfst gene as a transporter were investigated by the combination of gene deletion (Δmfst) complementation (ΔmfsT::mfsT) and overexpression (M7::PtrpC-mfsT). While, the feeding of PG pathway precursor side chain and amino acids, i.e., phenylacetic acid, D-valine, and L-cysteine was performed for the interpretation of mfsT gene role as an intermediate transporter. The results showed that, the feeding of phenylacetic acid, D-valine, and L-cysteine possessed a significant effect on morphologies, secondary metabolites (SMs) production of all above-mentioned strains including M. ruber M7. The results of UPLC-MS/MS revealed that, ΔmfsT interrupt the penicillin G (PG) production in M. ruber M7 by blocking the IPN transportation, while PG and IPN produced by the ΔmfsT::mfsT have been recovered the similar levels to those of M. ruber M7. Conclusively, these findings suggest that the M. ruber M7 is, not only a PG producer, but also, indicate that the mfsT gene is supposed to play a key role in IPN intermediate compound transportation during the PG production in M. ruber M7.
Collapse
|
30
|
Comparative Transcriptome Analysis of Streptomyces Clavuligerus in Response to Favorable and Restrictive Nutritional Conditions. Antibiotics (Basel) 2019; 8:antibiotics8030096. [PMID: 31330947 PMCID: PMC6784218 DOI: 10.3390/antibiotics8030096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Clavulanic acid (CA), a β-lactamase inhibitor, is industrially produced by the fermentation of Streptomyces clavuligerus. The efficiency of CA production is associated with media composition, culture conditions and physiological and genetic strain characteristics. However, the molecular pathways that govern CA regulation in S. clavuligerus remain unknown. Methods and Results: Here we used RNA-seq to perform a comparative transcriptome analysis of S. clavuligerus ATCC 27064 wild-type strain grown in both a favorable soybean-based medium and in limited media conditions to further contribute to the understanding of S. clavuligerus metabolism and its regulation. A total of 350 genes were found to be differentially expressed between conditions; 245 genes were up-regulated in favorable conditions compared to unfavorable. Conclusion: The up-regulated expression of many regulatory and biosynthetic CA genes was positively associated with the favorable complex media condition along with pleiotropic regulators, including proteases and some genes whose biological function have not been previously reported. Knowledge from differences between transcriptomes from complex/defined media represents an advance in the understanding of regulatory paths involved in S. clavuligerus’ metabolic response, enabling the rational design of future experiments.
Collapse
|
31
|
Wang G, Wang X, Wang T, Gulik W, Noorman HJ, Zhuang Y, Chu J, Zhang S. Comparative Fluxome and Metabolome Analysis of Formate as an Auxiliary Substrate for Penicillin Production in Glucose‐Limited Cultivation of
Penicillium chrysogenum. Biotechnol J 2019; 14:e1900009. [DOI: 10.1002/biot.201900009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Xinxin Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Tong Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Walter Gulik
- Cell Systems Engineering, Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Henk J. Noorman
- DSM Biotechnology Center Delft The Netherlands
- Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
32
|
Effect of Gamma-Rays on the Growth and Penicillin Production of Penicillium chrysogenum. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Wang G, Zhao J, Wang X, Wang T, Zhuang Y, Chu J, Zhang S, Noorman HJ. Quantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Wang G, Chu J, Zhuang Y, van Gulik W, Noorman H. A dynamic model-based preparation of uniformly-13C-labeled internal standards facilitates quantitative metabolomics analysis of Penicillium chrysogenum. J Biotechnol 2019; 299:21-31. [DOI: 10.1016/j.jbiotec.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
|
35
|
Chen C, He J, Gao W, Wei Y, Liu G. Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum. Curr Microbiol 2019; 76:545-551. [PMID: 30899986 DOI: 10.1007/s00284-019-01650-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023]
Abstract
Autophagy is a highly conserved mechanism to overcome various stresses and recycle cytoplasmic components and organelles. Ubiquitin-like (UBL) protein Atg12 is a key protein involved in autophagosome formation through stimulation of Atg8 conjugation to phosphatidylethanolamine. Here, we describe the identification of the autophagy-related gene Acatg12, encoding an Atg12 homologous protein in the cephalosporin C producing fungus Acremonium chrysogenum. Disruption of Acatg12 impaired the delivery and degradation of eGFP-Atg8, indicating that the autophagic process was blocked. Meanwhile, conidiation was dramatically reduced in the Acatg12 disruption mutant (∆Acatg12). In contrast, cephalosporin C production was increased twofold in ∆Acatg12, but fungal growth was reduced after 6 days fermentation. Consistent with these results, the transcriptional level of the cephalosporin biosynthetic genes was increased in ∆Acatg12. The results extend our understanding of autophagy in filamentous fungi.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100,101, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China
| | - Jia He
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100,101, China
| | - Yanmin Wei
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100,101, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Lin H, Lyu H, Zhou S, Yu J, Keller NP, Chen L, Yin WB. Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. Org Biomol Chem 2019; 16:4973-4976. [PMID: 29947411 DOI: 10.1039/c8ob01326h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By disruption of LaeB, a global regulator recently characterized in Aspergillus nidulans, eight cryptic compounds in the mutant were identified, including seven polyketides and one NRPS-like product. Among the isolates, two phthalides and two dibenzo[1,4]dioxins are new compounds, revealing that the genetic manipulation of the global regulator represents a promising approach for the discovery of novel natural products in fungi.
Collapse
Affiliation(s)
- Haizhou Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Mabkhot YN, Al-Showiman SS, Barakat A, Soliman SM, Kheder NA, Alharbi MM, Asayari A, Muhsinah AB, Ullah A, Badshah SL. Computational studies of 2-(4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile. BMC Chem 2019; 13:25. [PMID: 31384774 PMCID: PMC6661733 DOI: 10.1186/s13065-019-0542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/01/2019] [Indexed: 11/10/2022] Open
Abstract
The molecular structure of the 2-(4-oxo-3-phenylthiazolidin-2-ylidene) malononitrile (3) is calculated using DFT B3LYP/6-311G(d, p) method. The calculated geometric parameters are in good agreement with the experimental data. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and study the different intramolecular charge transfer (ICT) interactions occurring in the studied system. The BD(2)C17-C19 → BD*(2)C14-C15, LP(2)O2 → BD*(1)N5-C9 and LP(1)N5 → BD*(2)C10-C11 ICT interactions causing stabilization of the system by 23.30, 30.63 and 52.48 kcal/mol, respectively. The two intense electronic transition bands observed experimentally at 249 nm and 296 nm are predicted using the TD-DFT calculations at 237.9 nm (f = 0.1618) and 276.4 nm (f = 0.3408), respectively. These electronic transitions are due to H-3 → L (94%) and H → L (95%) excitations, respectively.
Collapse
Affiliation(s)
- Yahia N Mabkhot
- 1Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Salim S Al-Showiman
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - A Barakat
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia.,3Department of Chemistry, Faculty of Science, Alexandria University, P.O Box 426, Ibrahimia Alexandria, 21321 Egypt
| | - S M Soliman
- 3Department of Chemistry, Faculty of Science, Alexandria University, P.O Box 426, Ibrahimia Alexandria, 21321 Egypt.,4Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nabila A Kheder
- 5Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mohammed M Alharbi
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Abdulrahman Asayari
- 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Abdullatif Bin Muhsinah
- 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Asad Ullah
- 7Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120 KPK Pakistan
| | - Syed Lal Badshah
- 7Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120 KPK Pakistan
| |
Collapse
|
38
|
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018; 9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial β-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Reto D Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,DSM Biotechnology Centre, Delft, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
39
|
Jalaei J, Layeghi-Ghalehsoukhteh S, Hosseini A, Fazeli M. Antibacterial effects of gold nanoparticles functionalized with the extracted peptide from Vespa orientalis wasp venom. J Pept Sci 2018; 24:e3124. [PMID: 30358026 DOI: 10.1002/psc.3124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023]
Abstract
The development of novel antimicrobial strategies is necessary because of the escalation of multidrug-resistant pathogens. Recently, antimicrobial peptides and their combination with nanoparticles were regarded as a promising tool to target drug-resistant pathogens. Herein, we evaluated antimicrobial efficacy of a peptide extracted from Vespa orientalis wasp venom and also its conjugation with gold nanoparticles. Nanoparticle conjugation measurement was done by evaluating the absorbance changes of the surface plasmon resonance band of gold nanoparticles at 555 nm. A significant increase in the antibacterial activity against gram negative and positive bacteria was obtained when the extracted peptide conjugated with gold nanoparticles. Finally, the results show that this new peptide-AuNps has the high practical potential for antibacterial activity and may provide an alternative therapy for bacterial infection.
Collapse
Affiliation(s)
- Jafar Jalaei
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Arsalan Hosseini
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
40
|
Ying YM, Huang L, Tian T, Li CY, Wang SL, Ma LF, Shan WG, Wang JW, Zhan ZJ. Studies on the Chemical Diversities of Secondary Metabolites Produced by Neosartorya fischeri via the OSMAC Method. Molecules 2018; 23:E2772. [PMID: 30366473 PMCID: PMC6278566 DOI: 10.3390/molecules23112772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
The One Strain Many Compounds (OSMAC) method was applied to explore the chemical diversities of secondary metabolites produced by Neosartorya fischeri NRRL 181. Four pyripyropenes 1⁻4, eight steroids 5⁻11, and four prenylated indole alkaloids 12⁻15, were obtained from the fungus cultured in petri dishes containing potato dextrose agar (PDA). 1,7,11-trideacetylpyripyropene A (1) and 1,11-dideacetyl pyripyropene A (2) were obtained and spectroscopically characterized (1D, 2D NMR, and HR-ESI-MS) from a natural source for the first time. It offered a sustainable source of these two compounds, which were usually used as starting materials in preparing pyripyropene derivatives. In addition, as compared with all the other naturally occurring pyripyropenes, 1 and 2 possessed unique acetylation patterns that did not follow the established late-step biosynthetic rules of pyripyropenes. The natural occurrence of 1 and 2 in the fungus implied that the timing and order of hydroxylation and acetylation in the late-step biosynthetic pathway of pyripyropenes remained to be revealed. The isolation and identification of 1⁻15 indicated that the OSMAC method could remarkably alter the metabolic profile and enrich the chemical diversities of fungal metabolites. Compounds 1⁻4 exhibited no obvious cytotoxicity against the triple-negative breast cancer cell line MDA-MB-231 as compared with taxol.
Collapse
Affiliation(s)
- You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lu Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Ting Tian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Cui-Yu Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shi-Lei Wang
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jian-Wei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
41
|
Rabe P, Kamps JJAG, Schofield CJ, Lohans CT. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Nat Prod Rep 2018; 35:735-756. [PMID: 29808887 PMCID: PMC6097109 DOI: 10.1039/c8np00002f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/01/2023]
Abstract
Covering: up to 2017 2-Oxoglutarate (2OG) dependent oxygenases and the homologous oxidase isopenicillin N synthase (IPNS) play crucial roles in the biosynthesis of β-lactam ring containing natural products. IPNS catalyses formation of the bicyclic penicillin nucleus from a tripeptide. 2OG oxygenases catalyse reactions that diversify the chemistry of β-lactams formed by both IPNS and non-oxidative enzymes. Reactions catalysed by the 2OG oxygenases of β-lactam biosynthesis not only involve their typical hydroxylation reactions, but also desaturation, epimerisation, rearrangement, and ring-forming reactions. Some of the enzymes involved in β-lactam biosynthesis exhibit remarkable substrate and product selectivities. We review the roles of 2OG oxygenases and IPNS in β-lactam biosynthesis, highlighting opportunities for application of knowledge of their roles, structures, and mechanisms.
Collapse
Affiliation(s)
- Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jos J A G Kamps
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher T Lohans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
42
|
Viana Marques DDA, Machado SEF, Ebinuma VCS, Duarte CDAL, Converti A, Porto ALF. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics (Basel) 2018; 7:E61. [PMID: 30018235 PMCID: PMC6163296 DOI: 10.3390/antibiotics7030061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
β-Lactamase inhibitors have emerged as an effective alternative to reduce the effects of resistance against β-lactam antibiotics. The Streptomyces genus is known for being an exceptional natural source of antimicrobials and β-lactamase inhibitors such as clavulanic acid, which is largely applied in clinical practice. To protect against the increasing prevalence of multidrug-resistant bacterial strains, new antibiotics and β-lactamase inhibitors need to be discovered and developed. This review will cover an update about the main β-lactamase inhibitors producers belonging to the Streptomyces genus; advanced methods, such as genetic and metabolic engineering, to enhance inhibitor production compared with wild-type strains; and fermentation and purification processes. Moreover, clinical practice and commercial issues are discussed. The commitment of companies and governments to develop innovative strategies and methods to improve the access to new, efficient, and potentially cost-effective microbial products to combat the antimicrobial resistance is also highlighted.
Collapse
Affiliation(s)
- Daniela de Araújo Viana Marques
- Campus Serra Talhada, University of Pernambuco, Avenida Custódio Conrado, 600, AABB, Serra Talhada, Pernambuco 56912-550, Brazil.
| | - Suellen Emilliany Feitosa Machado
- Department of Antibiotics, Federal University of Pernambuco, Avenida da Engenharia, 2° andar, Cidade Universitária, Recife, Pernambuco 50740-600, Brazil.
| | - Valéria Carvalho Santos Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Araraquara 14800-903, Brazil.
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Pole, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy.
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, Recife, Pernambuco 52171-900, Brazil.
| |
Collapse
|
43
|
Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Appl Microbiol Biotechnol 2018; 102:7455-7464. [DOI: 10.1007/s00253-018-9163-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
|
44
|
Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum. Folia Microbiol (Praha) 2018; 64:33-39. [DOI: 10.1007/s12223-018-0625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
|
45
|
Chen Y, Jiang N, Wei YJ, Li X, Ge HM, Jiao RH, Tan RX. Citrofulvicin, an Antiosteoporotic Polyketide from Penicillium velutinum. Org Lett 2018; 20:3741-3744. [PMID: 29927257 DOI: 10.1021/acs.orglett.8b01272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Citrofulvicin (1), along with its early shunt product fulvionol (2), was characterized as a skeletally unprecedented antiosteoporotic agent from a human sputum-derived fungus Penicillium velutinum. The unique citrofulvicin framework is likely formed by a nonenzymatic intermolecular Diels-Alder cycloaddition between heptaketide-based intermediates. Citrofulvicin and fulvionol were demonstrated to be osteogenic at 0.1 μM in the prednisolone-induced osteoporotic zebrafish.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China
| | - Nan Jiang
- School of Pharmacy , Nanjing Medical University , Nanjing 210029 , China
| | - Ying Jie Wei
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Xiang Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
46
|
Yu HF, Qiu FJ, Wang YJ, Li YY, Fang L, Yao JB, Zhan ZJ, Shan WG, Ying YM. Induced Production of Furan Derivatives in a Fungal Endophyte Ceriporia lacerate HS-ZJUT-C13A by the Osmac Method. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2377-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Jia W, Shi L, Chu X. Dissociation mechanisms-based UHPLC Q-Orbitrap strategy for screening of cephalosporins and metabolites in shrimp. Food Chem 2018; 250:30-36. [DOI: 10.1016/j.foodchem.2018.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
|
48
|
Screening of medium constituents for clavulanic acid production by Streptomyces clavuligerus. Braz J Microbiol 2018; 49:832-839. [PMID: 29588197 PMCID: PMC6175696 DOI: 10.1016/j.bjm.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
Clavulanic acid is a β-lactam compound with potent inhibitory activity against β-lactamases. Studies have shown that certain amino acids play essential roles in CA biosynthesis. However, quantitative evaluations of the effects of these amino acids are still needed in order to improve CA production. Here, we report a study of the nutritional requirements of Streptomyces clavuligerus for CA production. Firstly, the influence of the primary nitrogen source and the salts composition was investigated. Subsequently, soybean protein isolate was supplemented with arginine (0.0-3.20gL-1), threonine (0.0-1.44gL-1), ornithine (0.0-4.08gL-1), and glutamate (0.0-8.16gL-1), according to a two-level central composite rotatable design. A medium containing ferrous sulfate yielded CA production of 437mgL-1, while a formulation without this salt produced only 41mgL-1 of CA. This substantial difference suggested that Fe2+ is important for CA biosynthesis. The experimental design showed that glutamate and ornithine negatively influenced CA production while arginine and threonine had no influence. The soybean protein isolate provided sufficient C5 precursor for CA biosynthesis, so that supplementation was unnecessary. Screening of medium components, together with experimental design tools, could be a valuable way of enhancing CA titers and reducing the process costs.
Collapse
|
49
|
Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis. Appl Microbiol Biotechnol 2018. [PMID: 29523936 DOI: 10.1007/s00253-018-8841-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.
Collapse
|
50
|
An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioprocess Biosyst Eng 2018; 41:657-669. [DOI: 10.1007/s00449-018-1900-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
|