1
|
Ding S, Dong J, Shi J, Ren K, Cui X, Shi Z, Li N, Xiang Y, Du F, Tang Z. Integrating commercial personal glucose meter with peroxidase-mimic DNAzyme to develop a versatile point-of-care biosensing platform. Biosens Bioelectron 2025; 273:117171. [PMID: 39837235 DOI: 10.1016/j.bios.2025.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The development of point-of-care testing (POCT) methods is highly desirable in molecular detection, as they enable disease diagnosis and biomarker monitoring on-site or at home. Repurposing existing POCT devices to detect diverse biomarkers is an economical way to develop new devices for POCT use. Personal glucose meter (PGM) is one of the most used off-the-shelf POCT devices that has been reused to detect non-glucose targets. However, developing a label-free, user-friendly, and cost-effective general PGM-based sensing platform remains a great challenge, primarily due to the reliance on protein enzymes in most existing signal transducing strategies. To overcome the challenges, we herein developed a DNAzyme-based signal transduction strategy that bridges non-glucose signals to PGM readouts. By integrating this strategy with CRISPR/Cas12a-mediated target sensing, we successfully established a simple and versatile platform (CaG-PGM) for biosensing. The utility of CaG-PGM in the detection of nucleic acid targets was successfully validated by detecting Monkeypox virus DNA and SARS-CoV-2 RNA with high sensitivity and specificity. We further demonstrated its generality in detecting non-nucleic acid targets including protein and small molecule. In conclusion, this study provides a cheap and effective strategy for repurposing PGM as a general biosensing platform and sheds new light on translating functional nucleic acids for POCT applications.
Collapse
Affiliation(s)
- Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106, PR China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinyi Shi
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kaiyuan Ren
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106, PR China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yijia Xiang
- School of Public Health, Chengdu Medical College, Chengdu, 610500, PR China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Ming W, Zhu Y, Jiang W, Zhang J, Liu J, Wu L, Qin Y. Advanced point-of-care biomarker testing for the diagnosis of cardiovascular diseases. SENSING AND BIO-SENSING RESEARCH 2025; 47:100747. [DOI: 10.1016/j.sbsr.2025.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
|
3
|
Liu M, Liu L, Chen J, Huang Z, Zhu H, Lin S, Qi W, Cheng ZJ, Li N, Sun B. Thirteen serum biochemical indexes and five whole blood coagulation indices in a point-of-care testing analyzer: ideal protocol for evaluating pulmonary and critical care medicine. J Zhejiang Univ Sci B 2025; 26:158-171. [PMID: 40015935 PMCID: PMC11867784 DOI: 10.1631/jzus.b2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2025]
Abstract
The accurate and timely detection of biochemical coagulation indicators is pivotal in pulmonary and critical care medicine. Despite their reliability, traditional laboratories often lag in terms of rapid diagnosis. Point-of-care testing (POCT) has emerged as a promising alternative, which is awaiting rigorous validation. We assessed 226 samples from patients at the First Affiliated Hospital of Guangzhou Medical University using a Beckman Coulter AU5821 and a PUSHKANG POCT Biochemistry Analyzer MS100. Furthermore, 350 samples were evaluated with a Stago coagulation analyzer STAR MAX and a PUSHKANG POCT Coagulation Analyzer MC100. Metrics included thirteen biochemical indexes, such as albumin, and five coagulation indices, such as prothrombin time. Comparisons were drawn against the PUSHKANG POCT analyzer. Bland-Altman plots (MS100: 0.8206‒0.9995; MC100: 0.8318‒0.9911) evinced significant consistency between methodologies. Spearman correlation pinpointed a potent linear association between conventional devices and the PUSHKANG POCT analyzer, further underscored by a robust correlation coefficient (MS100: 0.713‒0.949; MC100: 0.593‒0.950). The PUSHKANG POCT was validated as a dependable tool for serum and whole blood biochemical and coagulation diagnostics. This emphasizes its prospective clinical efficacy, offering clinicians a swift diagnostic tool and heralding a new era of enhanced patient care outcomes.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Li Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Jiaxi Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511495, China
| | - Zhifeng Huang
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Huiqing Zhu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Shengxuan Lin
- College of Medical Technology, Guangdong Medical University, Dongguan 523121, China
| | - Weitian Qi
- Second Clinical Medical School, Southern Medical University, Guangzhou 510515, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Ning Li
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China. ,
| | - Baoqing Sun
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
4
|
Cheng CH, Yatsuda H, Chen HH, Young GH, Liu SH, Wang RYL. Tracking the Risk of Cardiovascular Disease after Almond and Oat Milk Intervene or Statin Medication with a Powerful Reflex SH-SAW POCT Platform. SENSORS (BASEL, SWITZERLAND) 2024; 24:6517. [PMID: 39459999 PMCID: PMC11511040 DOI: 10.3390/s24206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Cardiovascular disease (CVD) represents the leading cause of death worldwide. For individuals at elevated risk for cardiovascular disease, early detection and monitoring of lipid status is imperative. The majority of lipid measurements conducted in hospital settings employ optical detection, which necessitates the use of relatively large-sized detection machines. It is, therefore, necessary to develop point-of-care testing (POCT) for lipoprotein in order to monitor CVD. To enhance the management and surveillance of CVD, this study sought to develop a POCT approach for apolipoprotein B (ApoB) utilizing a shear horizontal surface acoustic wave (SH-SAW) platform to assess the risk of heart disease. The platform employs a reflective SH-SAW sensor to reduce the sensor size and enhance the phase-shifted signals. In this study, the platform was utilized to monitor the impact of a weekly almond and oat milk or statins intervention on alterations in CVD risk. The SH-SAW ApoB test exhibited a linear range of 0 to 212 mg/dL, and a coefficient correlation (R) of 0.9912. Following a four-week intervention period, both the almond and oat milk intervention (-23.3%, p < 0.05) and statin treatment (-53.1%, p < 0.01) were observed to significantly reduce ApoB levels. These findings suggest that the SH-SAW POCT device may prove a valuable tool for monitoring CVD risk, particularly during routine daily or weekly follow-up visits.
Collapse
Affiliation(s)
- Chia-Hsuan Cheng
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamama-tsu-shi 432-8561, Japan; (C.-H.C.); (H.Y.)
- tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Hiromi Yatsuda
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamama-tsu-shi 432-8561, Japan; (C.-H.C.); (H.Y.)
- tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Han-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.-H.C.); (G.-H.Y.)
| | - Guang-Huar Young
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.-H.C.); (G.-H.Y.)
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Szu-Heng Liu
- tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Robert YL Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.-H.C.); (G.-H.Y.)
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou 33305, Taiwan
| |
Collapse
|
5
|
Kasputis T, Yeh PC, Liu L, Marano J, Weger-Lucarelli J, Du K, Lin L, Chen J. Development of a self-powered digital LAMP microfluidic chip (SP-dChip) for the detection of emerging viruses. LAB ON A CHIP 2024; 24:3490-3497. [PMID: 38920004 PMCID: PMC11272487 DOI: 10.1039/d4lc00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Point-of-care (POC) diagnostics have emerged as a crucial technology for emerging pathogen detections to enable rapid and on-site detection of infectious diseases. However, current POC devices often suffer from limited sensitivity with poor reliability to provide quantitative readouts. In this paper, we present a self-powered digital loop-mediated isothermal amplification (dLAMP) microfluidic chip (SP-dChip) for the rapid and quantitative detection of nucleic acids. The SP-dChip utilizes a vacuum lung design to passively digitize samples into individual nanoliter wells for high-throughput analysis. The superior digitization scheme is further combined with reverse transcription loop-mediated isothermal amplification (RT-LAMP) to demonstrate dLAMP detection of Zika virus (ZIKV). Firstly, the LAMP assay is loaded into the chip and passively digitized into individual wells. Mineral oil is then pipetted through the chip to differentiate each well as an individual reactor. The chip did not require any external pumping or power input for rapid and reliable results to detect ZIKA RNA as low as 100 copies per μL within one hour. As such, this SP-dChip offers a new class of solutions for truly affordable, portable, and quantitative POC detections for emerging viruses.
Collapse
Affiliation(s)
- Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Po-Chen Yeh
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Brescia V, Varraso L, Antonucci M, Lovero R, Schirinzi A, Mascolo E, Di Serio F. Analysis of Quality Indicators of the Pre-Analytical Phase on Blood Gas Analyzers, Point-Of-Care Analyzer in the Period of the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13061044. [PMID: 36980352 PMCID: PMC10047429 DOI: 10.3390/diagnostics13061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Aim of the study: We evaluated and compared blood gas analysis (EGA) non-conformities (NC) considered operator-dependent performed in Point-Of-Care (POC) analyzer as quality indicators (IQ) of the pre-analytical phase. To this end, four different NC registered in the resuscitation departments of the Hospital Polyclinic Bari from the beginning of the pandemic (March 2020) until February 2022 were evaluated. The results obtained were compared with those recorded in the pre-COVID period (March 2018–February 2020) to check if there were differences in number and type. Material and methods: GEM 4000 series blood gas analyzers (Instrumentation Laboratory, Bedford, MA, United States) are installed with integrated Intelligent Quality Management (iQM®), which automatically identify and log pre-analytical errors. All blood gas analyzers are connected to the company intranet and interfaced with the GEM Web Plus (Werfen Instrumentation Laboratory, Bedford, MA, United States) data management information system, which allows the core laboratory to remotely supervise all decentralized POC stations. The operator-dependent process NC were expressed in terms of absolute and relative proportions (percentiles and percentage changes). For performance evaluation, the Mann–Whitney U test, Chi-squared test and Six-Sigma Metric calculation for performance classification were performed. Results: In the COVID period, 31,364 blood gas tests were performed vs. 16,632 tests in the pre-COVID period. The NC related to the suitability of the EGA sample and manageable by the operators were totals of 652 (3.9%) and 749 (2.4%), respectively, in the pre-COVID and COVID periods. The pre-analytical phase IQs used did not show statistically significant differences in the two periods evaluated. The Sigma evaluation did not show an increase in error rates. Conclusions: Considering the increase in the number of EGAs performed in the two periods, the training procedures performed by the core laboratory staff were effective; the clinical users of the POC complied with the indications and procedures shared with the core laboratory without increasing the operator-dependent NCs. Furthermore, the core laboratory developed monitoring activities capable of guaranteeing the maintenance of the pre-analytical quality.
Collapse
|
7
|
Matthes A, Bleidorn J, Markwart R. Research on point-of-care tests in outpatient care in Germany: A scoping review and definition of relevant endpoints in evaluation studies. ZEITSCHRIFT FUR EVIDENZ, FORTBILDUNG UND QUALITAT IM GESUNDHEITSWESEN 2022; 174:1-10. [PMID: 36055890 DOI: 10.1016/j.zefq.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The fast turnaround time and user-friendliness of point-of-care tests (POCTs) offer a great potential to improve outpatient health care where clinical decisions have to be made during the physician-patient encounter and time resources are limited. The aim of this scoping review is to describe the extent and nature as well as gaps in German research activities on POCT in outpatient care. In addition, we define research endpoints that should be addressed in the comprehensive evaluation of POCTs targeted for outpatient care. METHODS We performed a scoping review with a systematic literature search in Medline (via PubMed), Scopus, Web of Science, Cochrane library and Google Scholar for German publications on POCT with relevance to German outpatient care published from January 2005 to November 2020. RESULTS Our literature search identified 2,200 unique records. After literature selection 117 articles were included in this scoping review. Just over half of the articles (67/117, 57.3%) were primary research studies with original data, while one third of all the studies (33.3%) were secondary research articles (e.g., review articles). The remaining articles were clinical recommendations / position papers (7/117, 6.0%) and other types of articles (3.4%). The majority of articles focused on POCT use in infectious diseases (44/117, 37.6%), diabetic syndromes (15.4%), cardiac disease (12.0%) or coagulopathies and thrombosis (10.3%), while the remaining articles did not specify the disease (13.7%) or investigated other diseases (11.1%). Similar to international studies, most primary research studies investigated the diagnostic performance of POCT (e.g., sensitivity, specificity). Evidence beyond diagnostic accuracy remains scarce, such as the impact on therapeutic decisions and practice routines, clinical effectiveness, and user perspectives. In line with this, interventional studies (such as RCTs) on the effectiveness of POCT use in German outpatient care are limited. We define six endpoint domains that should be addressed in the evaluation of POCTs targeted for outpatient care: (i) diagnostic performance, (ii) clinical performance, (iii) time and costs, (iv) impact on clinical routines / processes, (v) perspectives of medical professionals and patients, and (vi) broader aspects. CONCLUSION There is considerable research activity on POCTs targeted for use in outpatient care in Germany. Data on their potential benefits beyond diagnostic accuracy is often lacking and should be addressed in future POCT research studies.
Collapse
Affiliation(s)
- Anni Matthes
- Jena University Hospital, Institute of General Practice and Family Medicine, Friedrich Schiller University Jena, Germany; InfectoGnostics Research Campus Jena, Jena, Germany
| | - Jutta Bleidorn
- Jena University Hospital, Institute of General Practice and Family Medicine, Friedrich Schiller University Jena, Germany
| | - Robby Markwart
- Jena University Hospital, Institute of General Practice and Family Medicine, Friedrich Schiller University Jena, Germany; InfectoGnostics Research Campus Jena, Jena, Germany.
| |
Collapse
|
8
|
Lin S, Song X, Zhu K, Shao Q, Chen Y, Cheng W, Lei Z, Chen Y, Luo Y, Jin D. Performance Evaluation of a Novel Ultrafast Molecular Diagnostic Device Integrated With Microfluidic Chips and Dual Temperature Modules. Front Bioeng Biotechnol 2022; 10:895236. [PMID: 35662850 PMCID: PMC9162139 DOI: 10.3389/fbioe.2022.895236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ultrafast, portable, and inexpensive molecular diagnostic platforms are critical for clinical diagnosis and on-site detection. There are currently no available real-time polymerase chain reaction (PCR) devices able to meet the demands of point-of-care testing, as the heating and cooling processes cannot be avoided. In this study, the dual temperature modules were first designed to process microfluidic chips automatically circulating between them. Thus, a novel ultrafast molecular diagnostic real-time PCR device (approximately 18 and 23 min for DNA and RNA detection, respectively) with two channels (FAM and Cy5) for the detection of 12 targets was developed. The device contained three core functional components, including temperature control, optics, and motion, which were integrated into a portable compact box. The temperature modules accurately control temperature in rapid thermal cycles with less than ±0.1 °C, ±1 °C and ±0.5 °C for the temperature fluctuation, uniformity, and error of indication, respectively. The average coefficient of variation (CV) of the fluorescence intensity (FI) for all 12 wells was 2.3% for FAM and 2.7% for Cy5. There was a good linear relationship between the concentrations of fluorescent dye and the FIs of FAM and Cy5(R2 = 0.9990 and 0.9937), and the average CVs of the Ct values calculated by the embedded software were 1.4% for FAM and Cy5, respectively. The 100 double-blind mocked sputum and 249 clinical stool samples were analyzed by the ultrafast real-time PCR device in comparison with the DAAN Gene SARS-CoV-2 kit run on the ABI 7500 instrument and Xpert C. difficile/Epi, respectively. Among the 249 stool samples, the ultrafast real-time PCR device detected toxigenic C. difficile in 54 samples (54/249, 21.7%) with a specificity and positive predictive values of 99.0 and 96.3%, which were higher than the Xpert C. difficile/Epi values of 94.4 and 88.1% (p > 0.05). The ultrafast real-time PCR device detected 15 SARS-CoV-2 positive samples, which has a 100% concordance with that obtained by the DAAN Gene SARS-CoV-2 kit. This study demonstrated that the ultrafast real-time PCR device integrated with microfluidic chips and dual temperature modules is an ultrafast, reliable, easy-to-use, and cost-effective molecular diagnostic platform for clinical diagnosis and on-site testing, especially in resource-limited settings.
Collapse
Affiliation(s)
- Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Xiaojun Song
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kun Zhu
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Quanyu Shao
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yinhang Chen
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Wei Cheng
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Zhijing Lei
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Yun Luo, ; Dazhi Jin,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Yun Luo, ; Dazhi Jin,
| |
Collapse
|
9
|
Tombelli S, Trono C, Berneschi S, Berrettoni C, Giannetti A, Bernini R, Persichetti G, Testa G, Orellana G, Salis F, Weber S, Luppa PB, Porro G, Quarto G, Schubert M, Berner M, Freitas PP, Cardoso S, Franco F, Silverio V, Lopez-Martinez M, Hilbig U, Freudenberger K, Gauglitz G, Becker H, Gärtner C, O'Connell MT, Baldini F. An integrated device for fast and sensitive immunosuppressant detection. Anal Bioanal Chem 2022; 414:3243-3255. [PMID: 34936009 PMCID: PMC8956524 DOI: 10.1007/s00216-021-03847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.
Collapse
Affiliation(s)
- Sara Tombelli
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cosimo Trono
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Simone Berneschi
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Chiara Berrettoni
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Romeo Bernini
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Gianluca Persichetti
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Genni Testa
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francesca Salis
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Giampiero Porro
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Giovanna Quarto
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Markus Schubert
- Institute for Photovoltaics and Research Center SCoPE, University of Stuttgart, 70569, Stuttgart, Germany
| | - Marcel Berner
- Innovative Pyrotechnik GmbH, Steinwerkstraße 2, 71139, Ehningen, Germany
| | - Paulo P Freitas
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Fernando Franco
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Vânia Silverio
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Maria Lopez-Martinez
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Urs Hilbig
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Kathrin Freudenberger
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Günter Gauglitz
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Claudia Gärtner
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Mark T O'Connell
- Cornel Medical Limited, 17 Church Walk, St Neots, Cambridgeshire, PE19 1JH, UK
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Nichols ZE, Geddes CD. Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules 2021; 26:5666. [PMID: 34577137 PMCID: PMC8470389 DOI: 10.3390/molecules26185666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.
Collapse
Affiliation(s)
- Zach E. Nichols
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| | - Chris D. Geddes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| |
Collapse
|
11
|
Vashist SK. Trends in Multiplex Immunoassays for In Vitro Diagnostics and Point-of-Care Testing. Diagnostics (Basel) 2021; 11:diagnostics11091630. [PMID: 34573972 PMCID: PMC8471512 DOI: 10.3390/diagnostics11091630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sandeep Kumar Vashist
- Sensing Self Pte. Ltd., 160 Robinson Road, #20-03, Singapore Business Federation Ctr., Singapore 068914, Singapore
| |
Collapse
|
12
|
Regan B, O'Kennedy R, Collins D. Advances in point-of-care testing for cardiovascular diseases. Adv Clin Chem 2021; 104:1-70. [PMID: 34462053 DOI: 10.1016/bs.acc.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Point-of-care testing (POCT) is a specific format of diagnostic testing that is conducted without accompanying infrastructure or sophisticated instrumentation. Traditionally, such rapid sample-to-answer assays provide inferior analytical performances to their laboratory counterparts when measuring cardiac biomarkers. Hence, their potentially broad applicability is somewhat bound by their inability to detect clinically relevant concentrations of cardiac troponin (cTn) in the early stages of myocardial injury. However, the continuous refinement of biorecognition elements, the optimization of detection techniques, and the fabrication of tailored fluid handling systems to manage the sensing process has stimulated the production of commercial assays that can support accelerated diagnostic pathways. This review will present the latest commercial POC assays and examine their impact on clinical decision-making. The individual elements that constitute POC assays will be explored, with an emphasis on aspects that contribute to economically feasible and highly sensitive assays. Furthermore, the prospect of POCT imparting a greater influence on early interventions for medium to high-risk individuals and the potential to re-shape the paradigm of cardiovascular risk assessments will be discussed.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland; Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
13
|
Aydındoğan G, Kavaklı K, Şahin A, Artal P, Ürey H. Applications of augmented reality in ophthalmology [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:511-538. [PMID: 33659087 PMCID: PMC7899512 DOI: 10.1364/boe.405026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Throughout the last decade, augmented reality (AR) head-mounted displays (HMDs) have gradually become a substantial part of modern life, with increasing applications ranging from gaming and driver assistance to medical training. Owing to the tremendous progress in miniaturized displays, cameras, and sensors, HMDs are now used for the diagnosis, treatment, and follow-up of several eye diseases. In this review, we discuss the current state-of-the-art as well as potential uses of AR in ophthalmology. This review includes the following topics: (i) underlying optical technologies, displays and trackers, holography, and adaptive optics; (ii) accommodation, 3D vision, and related problems such as presbyopia, amblyopia, strabismus, and refractive errors; (iii) AR technologies in lens and corneal disorders, in particular cataract and keratoconus; (iv) AR technologies in retinal disorders including age-related macular degeneration (AMD), glaucoma, color blindness, and vision simulators developed for other types of low-vision patients.
Collapse
Affiliation(s)
- Güneş Aydındoğan
- Koç University, Department of Electrical Engineering and Translational Medicine Research Center (KUTTAM), Istanbul 34450, Turkey
| | - Koray Kavaklı
- Koç University, Department of Electrical Engineering and Translational Medicine Research Center (KUTTAM), Istanbul 34450, Turkey
| | - Afsun Şahin
- Koç University, School of Medicine and Translational Medicine Research Center (KUTTAM), Istanbul 34450, Turkey
| | - Pablo Artal
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Hakan Ürey
- Koç University, Department of Electrical Engineering and Translational Medicine Research Center (KUTTAM), Istanbul 34450, Turkey
| |
Collapse
|
14
|
Zhao S, Guo D, Zhu Q, Dou W, Guan W. Display of Microbial Glucose Dehydrogenase and Cholesterol Oxidase on the Yeast Cell Surface for the Detection of Blood Biochemical Parameters. BIOSENSORS 2020; 11:13. [PMID: 33396921 PMCID: PMC7823397 DOI: 10.3390/bios11010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023]
Abstract
High levels of blood glucose are always associated with numerous complications including cholesterol abnormalities. Therefore, it is important to simultaneously monitor blood glucose and cholesterol levels in patients with diabetes during the management of chronic diseases. In this study, a glucose dehydrogenase from Aspergillus oryzae TI and a cholesterol oxidase from Chromobacterium sp. DS-1 were displayed on the surface of Saccharomyces cerevisiae, respectively, using the yeast surface display system at a high copy number. In addition, two whole-cell biosensors were constructed through the immobilization of the above yeast cells on electrodes, for electrochemical detection of glucose and cholesterol. The assay time was 8.5 s for the glucose biosensors and 30 s for the cholesterol biosensors. Under optimal conditions, the cholesterol biosensor exhibited a linear range from 2 to 6 mmol·L-1. The glucose biosensor responded efficiently to the presence of glucose at a concentration range of 20-600 mg·dL-1 (1.4-33.3 mmol·L-1) and showed excellent anti-xylose interference properties. Both biosensors exhibited good performance at room temperature and remained stable over a three-week storage period.
Collapse
Affiliation(s)
- Shiyao Zhao
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Dong Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China;
| | - Quanchao Zhu
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Weiwang Dou
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| |
Collapse
|
15
|
Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper describes the sensitive properties of screen-printed carbon electrodes (SPCE) modified by using three different electroactive chemical compounds: Meldola’s Blue, Cobalt Phthalocyanine and Prussian Blue, respectively. It was demonstrated that the Prussian Blue (PB) modified SPCE presented electrochemical signals with the highest performances in terms of electrochemical process kinetics and sensitivity in all the solutions analyzed. PB-SPCE was demonstrated to detect Phe through the influence it exerts on the redox processes of PB. The PB-SPCE calibration have shown a linearity range of 0.33–14.5 µM, a detection limit (LOD) of 1.23 × 10−8 M and the standard deviation relative to 3%. The PB-SPCE sensor was used to determine Phe by means of calibration and standard addition techniques on pure samples, on simple pharmaceutical samples or on multicomponent pharmaceutical samples. Direct determination of the concentration of 4 × 10−6–5 × 10−5 M Phe in KCl solution showed that the analytical recovery falls in the range of 99.75–100.28%, and relative standard deviations in the range of 2.28–3.02%. The sensors were successfully applied to determine the Phe in pharmaceuticals. The validation of the method was performed by using the FTIR, and by comparing the results obtained by PB-SPCE in the analysis of three pharmaceutical products of different concentrations with those indicated by the producer.
Collapse
|
16
|
Liu Y, Cai Q, Qin C, Jin Y, Wang J, Chen Y, Ouyang Y, Li H, Liu S. Field-effect transistor bioassay for ultrasensitive detection of folate receptor 1 by ligand-protein interaction. Mikrochim Acta 2020; 187:637. [PMID: 33146801 DOI: 10.1007/s00604-020-04630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023]
Abstract
A miniaturized and integrated bioassay was developed based on molybdenum disulfide (MoS2) field-effect transistor (FET) functionalized with bovine serum albumin-folic acid (BSA-FA) for monitoring FOLR1. We performed the electrical test of FOLR1 within the range 100 fg/mL to 10 ng/mL, and the limit of detection was 0.057 pg/mL. The ultrahigh sensitivity of the bioassay was realized by ligand-protein interaction between FA and FOLR1, with a ligand-protein binding ratio of 3:1. The formation of FA-FOLR1 was confirmed with ELISA. The binding affinity dissociation constant KD was 12 ± 6 pg/mL. This device can work well for FOLR1 detection in human serum, which presents its promising application in point-of-care diagnosis. This study supports the future applications of such ligand-protein-based bioassays in the clinical practices. Graphical abstract MoS2-based FET device for detecting folate receptor 1 (FOLR1) was fabricated. The molecular folic acid as a probe can specifically bound to FOLR1 with a high affinity.
Collapse
Affiliation(s)
- Yeru Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Qiyong Cai
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Chaopeng Qin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Yuanyuan Jin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yang Chen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
17
|
Bhattacharjee M, Middya S, Escobedo P, Chaudhuri J, Bandyopadhyay D, Dahiya R. Microdroplet based disposable sensor patch for detection of α-amylase in human blood serum. Biosens Bioelectron 2020; 165:112333. [DOI: 10.1016/j.bios.2020.112333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
|
18
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
19
|
Johannis W, Bietenbeck A, Malchau G, Streichert T. Point-of-care testing (POCT) and IT security concepts. J LAB MED 2020. [DOI: 10.1515/labmed-2019-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Point-of-care testing (POCT) has been an essential service in hospitals for many years with a main focus on reliability, classical laboratory quality criteria and easy handling. Hospital information technology (IT) security regulations, however, have not yet been adapted to the specificities of POCT. Following the POCT Symposium in Munich, the “1st Round Table POCT-IT-Security Meeting” held in October 2019 in Cologne addressed these issues and managed to establish first consensus results in the essential fields of user, data and update management, as well as network connections and user-friendliness. First practical steps include optimizing the user management by connection to a directory service and definition of access control (including emergency authorization). Patient data economy on analyzers in combination with data and data transmission encryption as well as technically secure communication protocols are relevant steps in the fields of data management and network connections. An update management needs to be contractually defined for remote services and generally includes testing in a protocol-based scenario. Providing an organizational structure for POCT-IT security is a necessary prerequisite, as are continuous training and awareness for this topic with a strong focus on usability.
Collapse
Affiliation(s)
- Wibke Johannis
- Institute for Clinical Chemistry, Faculty of Medicine , University of Cologne , Cologne , Germany
| | - Andreas Bietenbeck
- Institute of Clinical Chemistry and Pathobiochemistry, Faculty of Medicine , Technical University of Munich , Munich , Germany
| | - Gebhart Malchau
- Institute for Clinical Chemistry, Faculty of Medicine , University of Cologne , Cologne , Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, Faculty of Medicine , University of Cologne , Cologne , Germany
| |
Collapse
|
20
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
22
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
23
|
Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Vu N, Narvaez-Rivas M, Chen GY, Rewers MJ, Zhang Q. Accurate mass and retention time library of serum lipids for type 1 diabetes research. Anal Bioanal Chem 2019; 411:5937-5949. [PMID: 31280478 DOI: 10.1007/s00216-019-01997-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Dysregulated lipid species are linked to various disease pathologies and implicated as potential biomarkers for type 1 diabetes (T1D). However, it is challenging to comprehensively profile the blood specimen lipidome with full structural details of every lipid molecule. The commonly used reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS)-based lipidomics approach is powerful for the separation of individual lipid species, but lipids belonging to different classes may still co-elute and result in ion suppression and misidentification of lipids. Using offline mixed-mode and RPLC-based two-dimensional separations coupled with MS/MS, a comprehensive lipidomic profiling was performed on human sera pooled from healthy and T1D subjects. The elution order of lipid molecular species on RPLC showed good correlations to the total number of carbons in fatty acyl chains and total number of double bonds. This observation together with fatty acyl methyl ester analysis was used to enhance the confidence of identified lipid species. The final T1D serum lipid library database contains 753 lipid molecular species with accurate mass and RPLC retention time uniquely annotated for each of the species. This comprehensive human serum lipid library can serve as a database for high-throughput RPLC-MS-based lipidomic analysis of blood samples related to T1D and other childhood diseases. Graphical abstract.
Collapse
Affiliation(s)
- Ngoc Vu
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.,Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Monica Narvaez-Rivas
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Guan-Yuan Chen
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Qibin Zhang
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA. .,Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28082, USA.
| |
Collapse
|
25
|
Thaler M, Luppa PB. Highly sensitive immunodiagnostics at the point of care employing alternative recognition elements and smartphones: hype, trend, or revolution? Anal Bioanal Chem 2019; 411:7623-7635. [PMID: 31236649 DOI: 10.1007/s00216-019-01974-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Immunodiagnostic tests performed at the point of care (POC) today usually employ antibodies for biorecognition and are read out either visually or with specialized equipment. Availability of alternative biorecognition elements with promising features as well as smartphone-based approaches for signal readout, however, challenge the described established configuration in terms of analytical performance and practicability. Assessing these developments' clinical relevance and their impact on POC immunodiagnostics is demanding. The first part of this review will therefore give an overview on suitable diagnostic biosensors based on alternative recognition elements (such as nucleic acid-based aptamers or engineered binding proteins) and exemplify advantages and drawbacks of these biomolecules on the base of selected assays. The second part of the review then focuses on smartphone-connected diagnostics and discusses the indispensable considerations required for successful future clinical POCT implementation. Together, the joint depiction of two of the most innovative and exciting developments in the field will enable the reader to cast a glance into the distant future of POC immunodiagnostics.
Collapse
Affiliation(s)
- Markus Thaler
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Peter B Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der TU München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
26
|
Recent advances in immunodiagnostics based on biosensor technologies-from central laboratory to the point of care. Anal Bioanal Chem 2019; 411:7607-7621. [PMID: 31152226 DOI: 10.1007/s00216-019-01915-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Immunological methods are widely applied in medical diagnostics for the detection and quantification of a plethora of analytes. Associated analytical challenges usually require these assays to be performed in a central laboratory. During the last several years, however, the clinical demand for rapid immunodiagnostics to be performed in the immediate proximity of the patient has been constantly increasing. Biosensors constitute one of the key technologies enabling the necessary, yet challenging transition of immunodiagnostic tests from the central laboratory to the point of care. This review is intended to provide insights into the current state of this transition process with a focus on the role of biosensor-based systems. To begin with, an overview on standard immunodiagnostic tests presently employed in the central laboratory and at the point of care is given. The review then moves on to demonstrate how biosensor technologies are reshaping this landscape. Single analyte as well as multiplexed immunosensors applicable to point of care scenarios are presented. A section on the areas of clinical application then creates the bridge to day-to-day diagnostic practice. Finally, the depicted developments are critically weighed and future perspectives discussed in order to give the reader a firm idea on the forthcoming trends to be expected in this diagnostic field.
Collapse
|
27
|
Purr F, Eckardt MF, Kieserling J, Gronwald PL, Burg TP, Dietzel A. Robust Smartphone Assisted Biosensing Based on Asymmetric Nanofluidic Grating Interferometry. SENSORS 2019; 19:s19092065. [PMID: 31058818 PMCID: PMC6540137 DOI: 10.3390/s19092065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Point-of-care systems enable fast therapy decisions on site without the need of any healthcare infrastructure. In addition to the sensitive detection, stable measurement by inexperienced persons outside of laboratory facilities is indispensable. A particular challenge in field applications is to reduce interference from environmental factors, such as temperature, to acceptable levels without sacrificing simplicity. Here, we present a smartphone-based point-of-care sensor. The method uses an optofluidic grating composed of alternating detection and reference channels arranged as a reflective phase grating. Biomolecules adsorbing to the detection channel alter the optical path length, while the parallel reference channels enable a direct common mode rejection within a single measurement. The optical setup is integrated in a compact design of a mobile readout device and the usability is ensured by a smartphone application. Our results show that different ambient temperatures do not have any influence on the signal. In a proof-of concept experiment we measured the accumulation of specific molecules in functionalized detection channels in real-time and without the need of any labeling. Therefore, the channel walls have been modified with biotin as capture molecules and the specific binding of streptavidin was detected. A mobile, reliable and robust point-of-care device has been realized by combining an inherently differential measurement concept with a smartphone-based, mobile readout device.
Collapse
Affiliation(s)
- Foelke Purr
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
- Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Max-Frederik Eckardt
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Jonas Kieserling
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Paul-Luis Gronwald
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Thomas P Burg
- Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
28
|
MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. J Transl Med 2019; 99:452-469. [PMID: 30542067 DOI: 10.1038/s41374-018-0143-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The volume of point of care (POC) testing continues to grow steadily due to the increased availability of easy-to-use devices, thus making it possible to deliver less costly care closer to the patient site in a shorter time relative to the central laboratory services. A novel class of molecules called microRNAs have recently gained attention in healthcare management for their potential as biomarkers for human diseases. The increasing interest of miRNAs in clinical practice has led to an unmet need for assays that can rapidly and accurately measure miRNAs at the POC. However, the most widely used methods for analyzing miRNAs, including Northern blot-based platforms, in situ hybridization, reverse transcription qPCR, microarray, and next-generation sequencing, are still far from being used as ideal POC diagnostic tools, due to considerable time, expertize required for sample preparation, and in terms of miniaturizations making them suitable platforms for centralized labs. In this review, we highlight various existing and upcoming technologies for miRNA amplification and detection with a particular emphasis on the POC testing industries. The review summarizes different miRNA targets and signals amplification-based assays, from conventional methods to alternative technologies, such as isothermal amplification, paper-based, oligonucleotide-templated reaction, nanobead-based, electrochemical signaling- based, and microfluidic chip-based strategies. Based on critical analysis of these technologies, the possibilities and feasibilities for further development of POC testing for miRNA diagnostics are addressed and discussed.
Collapse
|
29
|
Mousavi MPS, Ainla A, Tan EKW, K Abd El-Rahman M, Yoshida Y, Yuan L, Sigurslid HH, Arkan N, Yip MC, Abrahamsson CK, Homer-Vanniasinkam S, Whitesides GM. Ion sensing with thread-based potentiometric electrodes. LAB ON A CHIP 2018; 18:2279-2290. [PMID: 29987296 DOI: 10.1039/c8lc00352a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Potentiometric sensing of ions with ion-selective electrodes (ISEs) is a powerful technique for selective and sensitive measurement of ions in complex matrices. The application of ISEs is generally limited to laboratory settings, because most commercially available ISEs and reference electrodes are large, delicate, and expensive, and are not suitable for point-of-use or point-of-care measurements. This work utilizes cotton thread as a substrate for fabrication of robust and miniaturized ISEs that are suitable for point-of-care or point-of-use applications. Thread-based ISEs selective for Cl-, K+, Na+, and Ca2+ were developed. The cation-selective ISEs were fabricated by coating the thread with a surfactant-free conductive ink (made of carbon black) and then coating the tip of the conductive thread with the ion-selective membrane. The Cl- ISE was fabricated by coating the thread with an Ag/AgCl ink. These sensors exhibited slopes (of electrical potential vs. log concentration of target ion), close to the theoretically-expected values, over four orders of magnitude in concentrations of ions. Because thread is mechanically strong, the thread-based electrodes can be used in multiple-use applications as well as single-use applications. Multiple thread-based sensors can be easily bundled together to fabricate a customized sensor for multiplexed ion-sensing. These electrodes require volumes of sample as low as 200 μL. The application of thread-based ISEs is demonstrated in the analysis of ions in soil, food, and dietary supplements (Cl- in soil/water slurry, K+ and Na+ in coconut water, and Ca2+ in a calcium supplement), and in detection of physiological electrolytes (K+ and Na+ in blood serum and urine, with sufficient accuracy for clinical diagnostics).
Collapse
Affiliation(s)
- Maral P S Mousavi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chiavaioli F, Zubiate P, Del Villar I, Zamarreño CR, Giannetti A, Tombelli S, Trono C, Arregui FJ, Matias IR, Baldini F. Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors. ACS Sens 2018; 3:936-943. [PMID: 29726679 DOI: 10.1021/acssensors.7b00918] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The advent of optical fiber-based biosensors combined with that of nanotechnologies has provided an opportunity for developing in situ, portable, lightweight, versatile, and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nanometer-thick metal oxide films on optical fibers, which makes it possible to measure precisely and accurately the changes in optical properties of the fiber-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibers, permits enhancing the light-matter interaction. SEM and TEM imaging together with X-EDS tool have been utilized to characterize the two films used, i.e., indium tin oxide and tin dioxide. Moreover, the experimental transmission spectra obtained after the deposition of the nanocoatings have been numerically corroborated by means of wave propagation methods. With the use of a conventional wavelength interrogation system and ad hoc developed microfluidics, the shift of the lossy mode resonance can be reliably recorded in response to very low analyte concentrations. Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations. The biosensor has been regenerated several times by injecting sodium dodecyl sulfate, which proves the capability of sensor to be reused.
Collapse
Affiliation(s)
- Francesco Chiavaioli
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | - Ambra Giannetti
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Firenze, Italy
| | - Sara Tombelli
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Firenze, Italy
| | - Cosimo Trono
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Firenze, Italy
| | | | | | - Francesco Baldini
- Institute of Applied Physics “Nello Carrara” (IFAC), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
31
|
Integrated Framework of Load Monitoring by a Combination of Smartphone Applications, Wearables and Point-of-Care Testing Provides Feedback that Allows Individual Responsive Adjustments to Activities of Daily Living. SENSORS 2018; 18:s18051632. [PMID: 29783763 PMCID: PMC5981295 DOI: 10.3390/s18051632] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Athletes schedule their training and recovery in periods, often utilizing a pre-defined strategy. To avoid underperformance and/or compromised health, the external load during training should take into account the individual's physiological and perceptual responses. No single variable provides an adequate basis for planning, but continuous monitoring of a combination of several indicators of internal and external load during training, recovery and off-training as well may allow individual responsive adjustments of a training program in an effective manner. From a practical perspective, including that of coaches, monitoring of potential changes in health and performance should ideally be valid, reliable and sensitive, as well as time-efficient, easily applicable, non-fatiguing and as non-invasive as possible. Accordingly, smartphone applications, wearable sensors and point-of-care testing appear to offer a suitable monitoring framework allowing responsive adjustments to exercise prescription. Here, we outline 24-h monitoring of selected parameters by these technologies that (i) allows responsive adjustments of exercise programs, (ii) enhances performance and/or (iii) reduces the risk for overuse, injury and/or illness.
Collapse
|
32
|
Toskin I, Blondeel K, Peeling RW, Deal C, Kiarie J. Advancing point of care diagnostics for the control and prevention of STIs: the way forward. Sex Transm Infect 2018; 93:S81-S88. [PMID: 29223966 DOI: 10.1136/sextrans-2016-053073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/06/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
WHO recognises the global impact of sexually transmitted infections (STIs) on global public health and individual sexual and reproductive health and well-being. As a component of the WHO Global Health Sector Strategy for the control and prevention of STIs, there has been a growing recognition of the importance of integrating point-of-care tests (POCTs) into overall strategic planning. The process of integrating STI POCTs, in addition to providing a definitive diagnosis and appropriate treatment in a single visit, also includes innovative delivery options, such as on-site delivery, community-based testing (including screening), as well as self-testing at home after purchase of a test online or over-the-counter. WHO organised two technical consultations in May 2014 and July 2015. This article summarises the discussions of the meeting participants on advancing the use of POCTs to control and prevent STIs. The following priorities were identified: the need for pathogens' target discovery; encouragement of multiplexing, miniaturisation, simplification and connectivity; promotion of standardisation of evaluation of new diagnostic platforms across all stages of the evaluation pipeline; the need for an investment case, modelling and scenarios to ensure buy-in among key stakeholders, including developers and the private sector; the need for norms and standards, including guidelines, to support introduction of STI POCTs in programmes; anticipating potential tensions between different parties at the implementation level; and leveraging on the global initiative, Sustainable Development Goals (SDGs)/global health sector STI strategy, to sustain investment in STI POCT programmes. There is a rich pipeline of diagnostic products, but some have stalled in development. An approach to accelerate the evaluation of new diagnostics is to set up a competent network of evaluation sites ahead of time, harmonise regulatory approval processes with development of models to estimate cost-effectiveness, informed by better STI data. This should result in accelerating policy development. Although it may be some time before good POCTs can be widely implemented in low resource settings, it is important to be a catalyst for continued development and use of these essential tools as an integral part of both the WHO Global Health Sector Strategy and the agenda for 2030.
Collapse
Affiliation(s)
- Igor Toskin
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Karel Blondeel
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosanna W Peeling
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Rockville, USA
| | - James Kiarie
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
33
|
|
34
|
Chen LS, Singh RJ. Niche point-of-care endocrine testing - Reviews of intraoperative parathyroid hormone and cortisol monitoring. Crit Rev Clin Lab Sci 2018; 55:115-128. [PMID: 29357735 DOI: 10.1080/10408363.2018.1425975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Point-of-care (POC) testing, which provides quick test results in near-patient settings with easy-to-use devices, has grown continually in recent decades. Among near-patient and on-site tests, rapid intraoperative and intra-procedural assays are used to quickly deliver critical information and thereby improve patient outcomes. Rapid intraoperative parathyroid hormone (ioPTH) monitoring measures postoperative reduction of parathyroid hormone (PTH) to predict surgical outcome in patients with primary hyperparathyroidism, and therefore contributes to the change of parathyroidectomy to a minimally invasive procedure. In this review, recent progress in applying ioPTH monitoring to patients with secondary and tertiary hyperparathyroidism and other testing areas is discussed. In-suite cortisol monitoring facilitates the use of adrenal vein sampling (AVS) for the differential diagnosis of primary aldosteronism and adrenocorticotropic hormone (ACTH)-independent Cushing syndrome. In clinical and psychological research settings, POC testing is also useful for rapidly assessing cortisol in plasma and saliva samples as a biomarker of stress. Careful resource utilization and coordination among stakeholders help to determine the best approach for implementing cost-effective POC testing. Technical advances in integrating appropriate biosensors with microfluidics-based devices hold promise for future real-time POC cortisol monitoring.
Collapse
Affiliation(s)
- Li-Sheng Chen
- a Bureau of Laboratories , Michigan Department of Health and Human Services , Lansing , MI , USA
| | - Ravinder J Singh
- b Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
35
|
Kuupiel D, Bawontuo V, Mashamba-Thompson TP. Improving the Accessibility and Efficiency of Point-of-Care Diagnostics Services in Low- and Middle-Income Countries: Lean and Agile Supply Chain Management. Diagnostics (Basel) 2017; 7:E58. [PMID: 29186013 PMCID: PMC5745394 DOI: 10.3390/diagnostics7040058] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Access to point-of-care (POC) diagnostics services is essential for ensuring rapid disease diagnosis, management, control, and surveillance. POC testing services can improve access to healthcare especially where healthcare infrastructure is weak and access to quality and timely medical care is a challenge. Improving the accessibility and efficiency of POC diagnostics services, particularly in resource-limited settings, may be a promising route to improving healthcare outcomes. In this review, the accessibility of POC testing is defined as the distance/proximity to the nearest healthcare facility for POC diagnostics service. This review provides an overview of the impact of POC diagnostics on healthcare outcomes in low- and middle-income countries (LMICs) and factors contributing to the accessibility of POC testing services in LMICs, focusing on characteristics of the supply chain management and quality systems management, characteristics of the geographical location, health infrastructure, and an enabling policy framework for POC diagnostics services. Barriers and challenges related to the accessibility of POC diagnostics in LMICs were also discussed. Bearing in mind the reported barriers and challenges as well as the disease epidemiology in LMICs, we propose a lean and agile supply chain management framework for improving the accessibility and efficiency of POC diagnostics services in these settings.
Collapse
Affiliation(s)
- Desmond Kuupiel
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 4001 Durban, South Africa.
| | - Vitalis Bawontuo
- Faculty of Health and Allied Sciences, Catholic University College of Ghana, Fiapre, Sunyani, Ghana.
| | - Tivani P Mashamba-Thompson
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 4001 Durban, South Africa.
| |
Collapse
|
36
|
Giannetti A, Adinolfi B, Berneschi S, Berrettoni C, Chiavaioli F, Tombelli S, Trono C, Baldini F. Optical sensing in POCT: the contribution of the Institute of Applied Physics of the Italian CNR. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/labmed-2017-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractThe activity developed at the Institute of Applied Physics “Nello Carrara” in strict collaboration with physicians is described with particular attention to the measurement of bile-containing refluxes in the gastroesophageal apparatus, to the detection of gastric carbon dioxide in intensive care patients, to the measurement of sepsis biomarkers in serum samples and to the measurements of immunosuppressants in transplanted patients.
Collapse
|
37
|
Bruch R, Kling A, Urban GA, Dincer C. Dry Film Photoresist-based Electrochemical Microfluidic Biosensor Platform: Device Fabrication, On-chip Assay Preparation, and System Operation. J Vis Exp 2017:56105. [PMID: 28994807 PMCID: PMC5752260 DOI: 10.3791/56105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In recent years, biomarker diagnostics became an indispensable tool for the diagnosis of human disease, especially for the point-of-care diagnostics. An easy-to-use and low-cost sensor platform is highly desired to measure various types of analytes (e.g., biomarkers, hormones, and drugs) quantitatively and specifically. For this reason, dry film photoresist technology - enabling cheap, facile, and high-throughput fabrication - was used to manufacture the microfluidic biosensor presented here. Depending on the bioassay used afterwards, the versatile platform is capable of detecting various types of biomolecules. For the fabrication of the device, platinum electrodes are structured on a flexible polyimide (PI) foil in the only clean-room process step. The PI foil serves as a substrate for the electrodes, which are insulated with an epoxy-based photoresist. The microfluidic channel is subsequently generated by the development and lamination of dry film photoresist (DFR) foils onto the PI wafer. By using a hydrophobic stopping barrier in the channel, the channel is separated into two specific areas: an immobilization section for the enzyme-linked assay and an electrochemical measurement cell for the amperometric signal readout. The on-chip bioassay immobilization is performed by the adsorption of the biomolecules to the channel surface. The glucose oxidase enzyme is used as a transducer for electrochemical signal generation. In the presence of the substrate, glucose, hydrogen peroxide is produced, which is detected at the platinum working electrode. The stop-flow technique is applied to obtain signal amplification along with rapid detection. Different biomolecules can quantitatively be measured by means of the introduced microfluidic system, giving an indication of different types of diseases, or, in regard to therapeutic drug monitoring, facilitating a personalized therapy.
Collapse
Affiliation(s)
- Richard Bruch
- Department of Microsystems Engineering, University of Freiburg
| | - André Kling
- Department of Microsystems Engineering, University of Freiburg; Department of Biosystems Science and Engineering, ETH Zurich
| | - Gerald A Urban
- Department of Microsystems Engineering, University of Freiburg; Freiburg Materials Research Center, University of Freiburg
| | - Can Dincer
- Department of Microsystems Engineering, University of Freiburg; Freiburg Materials Research Center, University of Freiburg;
| |
Collapse
|
38
|
Abstract
Rapid point-of-care, antibody-based testing is not currently available for the diagnosis of most autoimmune and infectious diseases. Here we report a simple, robust and ultrafast fluid-phase immunocapture method for clinical measurements of antibody levels. This method employs neodymium magnetic sticks that capture protein A/G-coated paramagnetic beads bound to antibody-luciferase-labeled antigen complexes. We demonstrate the ability to effectively measure specific antibody levels in serum samples from patients with varied infectious or autoimmune disorders, and in the case of Sjögren’s syndrome directly in saliva, requiring about a minute per assay. We also show the feasibility of coupling this method with a hand-held luminometer for portable testing. Our method offers the potential to quickly diagnose a multitude of autoimmune and infectious diseases in point-of-care settings.
Collapse
|
39
|
Hosu O, Ravalli A, Lo Piccolo GM, Cristea C, Sandulescu R, Marrazza G. Smartphone-based immunosensor for CA125 detection. Talanta 2017; 166:234-240. [DOI: 10.1016/j.talanta.2017.01.073] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
40
|
Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed Point-of-Care Testing - xPOCT. Trends Biotechnol 2017; 35:728-742. [PMID: 28456344 PMCID: PMC5538621 DOI: 10.1016/j.tibtech.2017.03.013] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Multiplexed point-of-care testing (xPOCT), which is simultaneous on-site detection of different analytes from a single specimen, has recently gained increasing importance for clinical diagnostics, with emerging applications in resource-limited settings (such as in the developing world, in doctors’ offices, or directly at home). Nevertheless, only single-analyte approaches are typically considered as the major paradigm in many reviews of point-of-care testing. Here, we comprehensively review the present diagnostic systems and techniques for xPOCT applications. Different multiplexing technologies (e.g., bead- or array-based systems) are considered along with their detection methods (e.g., electrochemical or optical). We also address the unmet needs and challenges of xPOCT. Finally, we critically summarize the in-field applicability and the future perspectives of the presented approaches. Simultaneous on-site measurement of different substances from a single sample, called multiplexed point-of-care testing, has recently become more and more important for in vitro diagnostics. The major aim for the development of xPOCT systems is the smart combination of a high-performing device with a low system complexity. Thus, the on-site tests are realized in a short time by non-experts and ensure comparable results with clinical and central laboratory findings. A multiplexing capability of up to 10 analytes has been sufficient for many recent xPOCT applications. The future of xPOCT devices will be driven by novel biotechnologies (e.g., aptamers) or targets (e.g., circulating RNAs or tumor cells, exosomes, and miRNAs), as well as applications like personalized medicine, homecare monitoring, and wearables.
Collapse
Affiliation(s)
- Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; University of Freiburg, Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, 79104 Freiburg, Germany.
| | - Richard Bruch
- University of Freiburg, Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - André Kling
- ETH Zurich, Department of Biosystems Science and Engineering, Bioanalytics Group, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra S Dittrich
- ETH Zurich, Department of Biosystems Science and Engineering, Bioanalytics Group, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gerald A Urban
- University of Freiburg, Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; University of Freiburg, Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Bissonnette L, Bergeron MG. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev Mol Diagn 2017; 17:471-494. [PMID: 28343420 DOI: 10.1080/14737159.2017.1310619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
Collapse
Affiliation(s)
- Luc Bissonnette
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada
| | - Michel G Bergeron
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada.,b Département de microbiologie-infectiologie et d'immunologie , Faculté de médecine, Université Laval , Québec City , Québec , Canada
| |
Collapse
|
42
|
Dias TM, Fernandes E, Cardoso S, Monteiro G, Freitas PP. One-step trapping of droplets and surface functionalization of sensors using gold-patterned structures for multiplexing in biochips. RSC Adv 2017. [DOI: 10.1039/c7ra06085h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new methodology for one-step trapping of microspotted droplets and surface functionalization of sensors using gold-patterned structures for multiplexing Point-of-Care testing.
Collapse
Affiliation(s)
- T. M. Dias
- INESC Microsystems and Nanotechnologies
- Instituto de Nanociencias e Nanotecnologias
- 1000-029 Lisbon
- Portugal
- IBB–Institute for Bioengineering and Biosciences
| | - E. Fernandes
- International Iberian Nanotechnology Laboratory
- Braga
- Portugal
| | - S. Cardoso
- Instituto Superior Tecnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
- International Iberian Nanotechnology Laboratory
| | - G. Monteiro
- IBB–Institute for Bioengineering and Biosciences
- 1049-001 Lisboa
- Portugal
- Instituto Superior Tecnico
- Universidade de Lisboa
| | - P. P. Freitas
- INESC Microsystems and Nanotechnologies
- Instituto de Nanociencias e Nanotecnologias
- 1000-029 Lisbon
- Portugal
- International Iberian Nanotechnology Laboratory
| |
Collapse
|
43
|
SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events. SENSORS 2016; 16:s16060870. [PMID: 27314345 PMCID: PMC4934296 DOI: 10.3390/s16060870] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/22/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023]
Abstract
In this paper we review the underlying principles of the surface plasmon resonance (SPR) technique, particularly emphasizing its advantages along with its limitations regarding the ability to discriminate between the specific binding response and the interfering effects from biological samples. While SPR sensors were developed almost three decades, SPR detection is not yet able to reduce the time-consuming steps of the analysis, and is hardly amenable for miniaturized, portable platforms required in point-of-care (POC) testing. Recent advances in near-field optics have emerged, resulting in the development of SPR imaging (SPRi) as a powerful optical, label-free monitoring tool for multiplexed detection and monitoring of biomolecular events. The microarrays design of the SPRi chips incorporating various metallic nanostructures make these optofluidic devices more suitable for diagnosis and near-patient testing than the traditional SPR sensors. The latest developments indicate SPRi detection as being the most promising surface plasmon-based technique fulfilling the demands for implementation in lab-on-a-chip (LOC) technologies.
Collapse
|
44
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|