1
|
Yin D, Zhong Y, Hu J. Microbial polysaccharides biosynthesis and their regulatory strategies. Int J Biol Macromol 2025:143013. [PMID: 40220805 DOI: 10.1016/j.ijbiomac.2025.143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Karimi I, Ghowsi M, Mohammed LJ, Haidari Z, Nazari K, Schiöth HB. Inulin as a Biopolymer; Chemical Structure, Anticancer Effects, Nutraceutical Potential and Industrial Applications: A Comprehensive Review. Polymers (Basel) 2025; 17:412. [PMID: 39940613 PMCID: PMC11819723 DOI: 10.3390/polym17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Inulin is a versatile biopolymer that is non-digestible in the upper alimentary tract and acts as a bifidogenic prebiotic which selectively promotes gut health and modulates gut-organ axes through short-chain fatty acids and possibly yet-to-be-known interactions. Inulin usage as a fiber ingredient in food has been approved by the FDA since June 2018 and it is predicted that the universal inulin market demand will skyrocket in the near future because of its novel applications in health and diseases. This comprehensive review outlines the known applications of inulin in various disciplines ranging from medicine to industry, covering its benefits in gut health and diseases, metabolism, drug delivery, therapeutic pharmacology, nutrition, and the prebiotics industry. Furthermore, this review acknowledges the attention of researchers to knowledge gaps regarding the usages of inulin as a key modulator in the gut-organ axes.
Collapse
Affiliation(s)
- Isaac Karimi
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Layth Jasim Mohammed
- Department of Medical Microbiology, College of Medicine, Babylon University, Hilla City 51002, Babylon Governorate, Iraq;
| | - Zohreh Haidari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Kosar Nazari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Deylaghian S, Nikooee E, Habibagahi G, Nagel T. Inulin biopolymer as a novel material for sustainable soil stabilization. Sci Rep 2024; 14:31078. [PMID: 39730738 DOI: 10.1038/s41598-024-82289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization. This contribution is one of the first studies assessing the feasibility of using inulin to stabilize soil and mitigate erosion. Inulin has several agricultural waste sources, making it a sustainable alternative to traditional additives. Soil samples susceptible to wind erosion were collected from a dust-prone area in southwest Iran and treated with inulin at 0%, 0.5%, 1%, and 2% by weight. Their mechanical strength was evaluated using unconfined compressive strength tests and a penetrometer. In addition, wind tunnel tests (at 16 m/s) were performed to investigate inulin's wind erosion mitigation potential. The durability of treated samples was evaluated after ten wetting-drying cycles to assess the effect of environmental stressors. The results indicated a 40-fold increase in the unconfined compressive strength (up to 8 MPa) of the samples treated with 2% inulin and only 0.22% weight loss after ten wetting-drying cycles. SEM images revealed the formation of biopolymer-induced particle-to-particle bonds. Moreover, Raman spectroscopy indicated molecular (hydrogen) bonding of the biopolymer hydrogel-soil particles facilitated by the hydroxyl groups of inulin. The deterioration in stiffness and strength of treated samples was less noticeable after 3rd dry-wet cycle, indicating the durability of the samples. The durability of samples against wet-dry cycles was attributed to molecular bonding of soil-biopolymer hydrogel, as revealed by FTIR analysis.
Collapse
Affiliation(s)
- Sajjad Deylaghian
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
| | - Ehsan Nikooee
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
| | - Ghassem Habibagahi
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
| | - Thomas Nagel
- Geotechnical Institute, TU Bergakademie Freiberg, Freiberg, Germany
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
4
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Río IMD, González-Andrade M, Portillo FVL, Olvera-Carranza C. Exploring the role of the residues into catalytic cavity of inulosucrase from Leuconostoc citreum CW28. Int J Biol Macromol 2024; 279:135159. [PMID: 39214229 DOI: 10.1016/j.ijbiomac.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Inulosucrases are enzymes capable of synthesizing inulin polymers using sucrose as the main substrate. The enzymatic activity relies on the catalytic triad within the active site and residues responsible for substrate recognition and orientation, termed carbohydrate-binding subsites. This study investigates the role of specific residues within the catalytic cavity of a truncated version of IslA4 in enzymatic catalysis. Mutants at residues S425, L499, A602, R618, F619, Y676, Y692, and R696 were constructed and characterized. Characterization results, and in silico structural comparison with other fructansucrases, reveal these residues' functional significance in catalysis. Residue S425 belongs to subsite -1; residues R618 and Y692 are part of subsite +1, and residue R696 belongs to subsites +1 and +2. Residues L499 and A602 are support residues; the former favors the formation of the fructosyl-enzyme intermediate, while the latter stabilizes the acid/base catalyst during catalysis. Residues Y676 and F619 may participate in stabilizing residues at -1/+1 subsites. This study represents the first comprehensive exploration of the structural determinants essential for enzymatic function in the inulosucrase of Leuconostoc citreum, and proposes the identity of residues involved in the -1 to +2 subsites.
Collapse
Affiliation(s)
- Ingrid Mercado-Del Río
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, 04510, Mexico
| | - Francisco Vera-López Portillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Huang Z, Ni D, Chen Z, Zhu Y, Zhang W, Mu W. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability. Crit Rev Food Sci Nutr 2024; 64:11396-11408. [PMID: 37485919 DOI: 10.1080/10408398.2023.2238054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.
Collapse
Affiliation(s)
- Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Ni D, Zhang S, Huang Z, Liu X, Xu W, Zhang W, Mu W. Multistrategy Engineering of an Inulosucrase to Enhance the Activity and Thermostability for Efficient Production of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18100-18109. [PMID: 39090787 DOI: 10.1021/acs.jafc.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Xu W, Zhang X, Ni D, Zhang W, Guang C, Mu W. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity. Food Chem 2024; 440:138250. [PMID: 38154282 DOI: 10.1016/j.foodchem.2023.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and β-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed β-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and β-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Ni D, Zhang S, Liu X, Zhu Y, Xu W, Zhang W, Mu W. Production, effects, and applications of fructans with various molecular weights. Food Chem 2024; 437:137895. [PMID: 37924765 DOI: 10.1016/j.foodchem.2023.137895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Fructan, a widespread functional polysaccharide, has been used in the food, pharmaceutical, cosmetic, and material production fields because of its versatile physicochemical properties and biological activities. Inulin from plants and levan from microorganisms are two of the most extensively studied fructans. Fructans from different plants or microorganisms have inconsistent molecular weights, and the molecular weight of fructan affects its properties, functions, and applications. Recently, increasing attention has been paid to the production and application of fructans having various molecular weights, and biotechnological processes have been explored to produce tailor-made fructans from sucrose. This review encompasses the introduction of extraction, enzymatic transformation, and fermentation production processes for fructans with diverse molecular weights. Notably, it highlights the enzymes involved in fructan biosynthesis and underscores their physiological effects, with a special emphasis on their prebiotic properties. Moreover, the applications of fructans with varying molecular weights are also emphasized.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Versluys M, Porras-Domínguez JR, Voet A, Struyf T, Van den Ende W. Insights in inulin binding and inulin oligosaccharide formation by novel multi domain endo-inulinases from Botrytis cinerea. Carbohydr Polym 2024; 328:121690. [PMID: 38220320 DOI: 10.1016/j.carbpol.2023.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
World-wide, pathogenic fungi such as Botrytis cinerea cause tremendous yield losses in terms of food production and post-harvest food decay. Many fungi produce inulin-type oligosaccharides (IOSs) from inulin through endo-inulinases which typically show a two domain structure. B.cinerea lacks a two domain endo-inulinase but contains a three domain structure instead. Genome mining revealed three and four domain (d4) enzymes in the fungal kingdom. Here, three and two domain enzymes were compared in their capacity to produce IOSs from inulin. Hill kinetics were observed in three domain enzymes as compared to Michaelis-Menten kinetics in two domain enzymes, suggesting that the N-terminal extension functions as a carbohydrate binding module. Analysis of the IOS product profiles generated from purified GF6, GF12, GF16 and GF18 inulins and extensive sugar docking approaches led to enhanced insights in the active site functioning, revealing subtle differences between the endo-inulinases from Aspergillus niger and B. cinerea. Improved insights in structure-function relationships in fungal endo-inulinases offer opportunities to develop superior enzymes for the production of specific IOS formulations to improve plant and animal health (priming agents, prebiotics).
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Jaime Ricardo Porras-Domínguez
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Arnout Voet
- Laboratory of Biochemistry, Molecular and Structural Biology, KU Leuven, Celestijnenlaan 200g, 3001 Leuven, Belgium.
| | - Tom Struyf
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Karpenko MY, Abronina PI, Zinin AI, Chizhov AO, Kononov LO. TIPS group-assisted isomerization of benzyl protected d-manno- and d-glucopyranose to d-fructofuranose derivatives. Carbohydr Res 2023; 534:108942. [PMID: 37769375 DOI: 10.1016/j.carres.2023.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Base-promoted (MeONa in MeOH or imidazole in DMF) isomerization of a series of 3,4,6-tri-O-benzyl-d-gluco- and d-mannopyranose derivatives with triisopropylsilyl (TIPS) substituents was studied. The presence of a bulky TIPS group at O-1 or O-2 was shown to be favorable for the isomerization of benzyl protected d-gluco- and d-mannopyranose derivatives to d-fructofuranose derivatives, in which the bulky silyl group occupies less sterically hindered primary position. The highest yield (33%) of the fructofuranose derivative was achieved when 3,4,6-tri-O-benzyl-2-O-triisopropylsilyl-d-mannopyranose was treated with MeONa in MeON at 50 °C.
Collapse
Affiliation(s)
- Maxim Y Karpenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
12
|
Härer L, Ernst L, Bechtner J, Wefers D, Ehrmann MA. Glycoside hydrolase family 32 enzymes from Bombella spp. catalyze the formation of high-molecular weight fructans from sucrose. J Appl Microbiol 2023; 134:lxad268. [PMID: 37974045 DOI: 10.1093/jambio/lxad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS Acetic acid bacteria of the genus Bombella have not been reported to produce exopolysaccharides (EPS). In this study, the formation of fructans by B. apis TMW 2.1884 and B. mellum TMW 2.1889 was investigated. METHODS AND RESULTS Out of eight strains from four different Bombella species, only B. apis TMW 2.1884 and B. mellum TMW 2.1889 showed EPS formation with 50 g l-1 sucrose as substrate. Both EPS were identified as high-molecular weight (HMW) polymers (106-107 Da) by asymmetric flow field-flow fractionation coupled to multi angle laser light scattering and UV detecors (AF4-MALLS/UV) and high performance size exclusion chromatography coupled to MALLS and refractive index detectors (HPSEC-MALLS/RI) analyses. Monosaccharide analysis via trifluoroacetic acid hydrolysis showed that both EPS are fructans. Determination of glycosidic linkages by methylation analysis revealed mainly 2,6-linked fructofuranose (Fruf) units with additional 2,1-linked Fruf units (10%) and 2,1,6-Fruf branched units (7%). No glycoside hydrolase (GH) 68 family genes that are typically associated with the formation of HMW fructans in bacteria could be identified in the genomes. Through heterologous expression in Escherichia coli Top10, an enzyme of the GH32 family could be assigned to the catalysis of fructan formation. The identified fructosyltransferases could be clearly differentiated phylogenetically and structurally from other previously described bacterial fructosyltransferases. CONCLUSIONS The formation of HMW fructans by individual strains of the genus Bombella is catalyzed by enzymes of the GH32 family. Analysis of the fructans revealed an atypical structure consisting of 2,6-linked Fruf units as well as 2,1-linked Fruf units and 2,1,6-Fruf units.
Collapse
Affiliation(s)
- Luca Härer
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Luise Ernst
- Institute of Chemistry, Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| | - Julia Bechtner
- Department of Food Science-Food Technology, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Daniel Wefers
- Institute of Chemistry, Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
13
|
Frolova Y, Vorobyeva V, Vorobyeva I, Sarkisyan V, Malinkin A, Isakov V, Kochetkova A. Development of Fermented Kombucha Tea Beverage Enriched with Inulin and B Vitamins. FERMENTATION-BASEL 2023; 9:552. [DOI: 10.3390/fermentation9060552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Kombucha is a sweet and sour beverage made by fermenting a liquid base with a symbiotic culture of bacteria and yeast. Different tea substrates, carbohydrate sources, and additional ingredients are used to create beverages with different physical and chemical characteristics. The purpose of this work was to create a recipe and technology to study the properties of the beverage based on kombucha with a given chemical composition. The content of added functional ingredients (vitamins and inulin) in quantities comparable with reference daily intake was the specified parameter characterizing the distinctive features of the enriched beverages. For fermentation using symbiotic cultures of bacteria and yeast, a black tea infusion sweetened with sucrose was used as a substrate. The changes in the physicochemical characteristics of the fermented tea beverage base were evaluated. The dynamics of changes in pH, acidity, the content of mono- and disaccharides, ethanol, organic acids, polyphenolic compounds, and volatile organic substances were shown. The fermentation conditions were selected (pH up to 3.3 ± 0.3, at T = 25 ± 1 °C, process duration of 14 days) to obtain the beverage base. Strawberry and lime leaves were used as flavor and aroma ingredients, and vitamins with inulin were used as functional ingredients. Since the use of additional ingredients changed the finished beverage’s organoleptic profile and increased its content of organic acids, the final product’s physical–chemical properties, antioxidant activity, and organoleptic indicators were assessed. The content of B vitamins in the beverages ranges from 29 to 44% of RDI, and 100% of RDI for inulin, which allows it to be attributed to the category of enriched products. The DPPH inhibitory activity of the beverages was 82.0 ± 7%, and the ethanol content did not exceed 0.43%. The beverages contained a variety of organic acids: lactic (43.80 ± 4.82 mg/100 mL), acetic (205.00 ± 16.40 mg/100 mL), tartaric (2.00 ± 0.14 mg/100 mL), citric (65.10 ± 5.86 mg/100 mL), and malic (45.50 ± 6.37 mg/100 mL). The technology was developed using pilot equipment to produce fermented kombucha tea enriched with inulin and B vitamins.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Valentina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Irina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alexey Malinkin
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Vasily Isakov
- Department of Gastroenterology & Hepatology, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
14
|
Zhang S, Ni D, Xu W, Zhang W, Mu W. Characterization of a processive inulosucrase from Lactobacillus mulieris for efficient biosynthesis of high-molecular-weight inulin. Enzyme Microb Technol 2023; 164:110186. [PMID: 36529060 DOI: 10.1016/j.enzmictec.2022.110186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Inulin has been determined to have many exceptional properties and functions and has been used in the food and pharmaceutical fields. Recently, microbial high-molecular-weight inulin synthesized from sucrose by inulosucrase attracted much attention. In this study, a novel inulosucrase from Lactobacillus mulieris was constructed, overexpressed, purified, and identified. The recombinant enzyme displayed the maximum activity at pH 6.0 and 55 °C, and it exhibited high thermostability below 45 °C. After optimizing the production conditions, the conversion rate from 100 g/L sucrose to inulin reached 31 %, meanwhile, the maximum molecular weight of produced inulin reached 3.21 × 106 g/mol. The truncated IS showed a "processive" transfructosylation process, only synthesizing a small number of short-chain oligosaccharides with polymerization degrees below 6, which was in favor of the accumulation of high-molecular-weight inulin. Given this, L. mulieris inulosucrase might be a good potential candidate for the industrial production of high-molecular-weight inulin.
Collapse
Affiliation(s)
- Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Ko H, Sung BH, Kim MJ, Sohn JH, Bae JH. Fructan Biosynthesis by Yeast Cell Factories. J Microbiol Biotechnol 2022; 32:1373-1381. [PMID: 36310357 PMCID: PMC9720074 DOI: 10.4014/jmb.2207.07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Cellapy Bio Inc., Bio-Venture Center 211, Daejeon 34141, Republic of Korea,Corresponding authors J.H. Sohn Phone: +82-42-860-4458 Fax: +82-42-860-4489 E-mail:
| | - Jung-Hoon Bae
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
J.H. Bae Phone: +82-42-860-4484 Fax: +82-42-860-4489 E-mail:
| |
Collapse
|
16
|
Wienberg F, Hövels M, Deppenmeier U. High-yield production and purification of prebiotic inulin-type fructooligosaccharides. AMB Express 2022; 12:144. [DOI: 10.1186/s13568-022-01485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDue to the health-promoting effects and functional properties of inulin-type fructooligosaccharides (I-FOS), the global market for I-FOS is constantly growing. Hence, there is a continuing demand for new, efficient biotechnological approaches for I-FOS production. In this work, crude inulosucrase InuGB-V3 from Lactobacillus gasseri DSM 20604 was used to synthesize I-FOS from sucrose. Supplementation with 1 mM CaCl2, a pH of 3.5–5.5, and an incubation temperature of 40 °C were found to be optimal production parameters at which crude inulosucrase showed high conversion rates, low sucrose hydrolysis, and excellent stability over 4 days. The optimal process conditions were employed in cell-free bioconversion reactions. By elevating the substrate concentration from 570 to 800 g L−1, the I-FOS concentration and the synthesis of products with a low degree of polymerization (DP) could be increased, while sucrose hydrolysis was decreased. Bioconversion of 800 g L−1 sucrose for 20 h resulted in an I-FOS-rich syrup with an I-FOS concentration of 401 ± 7 g L−1 and an I-FOS purity of 53 ± 1% [w/w]. I-FOS with a DP of 3–11 were synthesized, with 1,1-kestotetraose (DP4) being the predominant transfructosylation product. The high-calorie sugars glucose, sucrose, and fructose were removed from the generated I-FOS-rich syrup using activated charcoal. Thus, 81 ± 5% of the initially applied I-FOS were recovered with a purity of 89 ± 1%.
Collapse
|
17
|
Ni D, Zhang S, Huang Z, Xu W, Zhang W, Mu W. Directionally modulating the product chain length of an inulosucrase by semi-rational engineering for efficient production of 1-kestose. Enzyme Microb Technol 2022; 160:110085. [PMID: 35752090 DOI: 10.1016/j.enzmictec.2022.110085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Microbial inulosucrase as a transfructosylation tool has been used to produce inulin and inulin-type fructooligosaccharides with various polymerization degrees. Tailor-made oligosaccharides could be generated by inulosucrase via chain length modulation. In this study, a semi-rational design based on the modeled structure of Lactobacillus reuteri 121 inulosucrase was carried out to screen and construct variants. The residues Arg541 and Arg544 were determined to be significant to the product chain elongation of L. reuteri 121 inulosucrase. The variant R544W altered the product specificity of inulosucrase and produced short-chain fructooligosaccharides with 1-kestose as the main component. Molecular dynamic simulations verified an increased binding free energy of variant R544W with 1-kestose than the wild-type enzyme with 1-kestose. After optimization, 1-kestose and total short-chain fructooligosaccharides production reached approximately 206 g/L and 307 g/L, respectively. This study suggests the great potential of variant R544W in the biotransformation from sucrose to functional sugar.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Korshunova N, Balanov P, Smotraeva I, Ivanchenko O. Fermentation of an oat drink enriched with sunflower root inulin. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224802003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of secondary raw materials to obtain useful products is a relevant direction of research. So sunflower root remains in large quantities after harvesting sunflower. For example, in 2021, after harvesting sunflower, about 67 million tons of dry organic residues of this plant remained in the fields. The possibility to use sunflower roots for inulin production is interesting, so earlier sunflower roots were examined for the presence of inulin in it. Studies have shown that up to 10% of inulin can be found in sunflower roots. Inulin is a dietary fiber and a prebiotic and has a beneficial effect on the microbiome of the gastrointestinal tract. The development of fermented oat drinks will provide a combination of the functional properties of probiotic cultures with the prebiotic properties of inulin from sunflower root. In this article, two technological schemes for the production of a functional oat drink containing inulin extract from sunflower root are investigated. For the fermentation of the drink, lactic acid bacteria of the species Lactobacillus acidophilus were chosen. Several variants of beverage formulations were investigated. The dynamics of changes in the content of inulin during fermentation for 24 hours is presented.
Collapse
|
20
|
Characterization of a novel fructosyltransferase InuCA from Lactobacillus crispatus that attaches to the cell surface by electrostatic interaction. Appl Environ Microbiol 2021; 88:e0239921. [PMID: 34910558 DOI: 10.1128/aem.02399-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fructosyltransferases (FTases), a group of carbohydrate-active enzymes, synthesize fructooligosaccharides (FOS) and fructans, which are promising prebiotics for human health. Here we originally identified a novel FTase InuCA from L. crispatus, a dominant species in the vaginal microbiotas of human. InuCA was characterized by a shortest C-terminus and the highest isoelectric point among the reported Lactobacillus FTases. InuCA was an inulosucrase and produced a serial of FOS using sucrose as substrate at a moderate temperature. Surprisingly, the C-terminal deletion mutant synthesized oligosaccharides with fructosyl chain longer than that of the wild type, suggesting that the C-terminal part blocked the binding of long-chain receptor. Moreover, InuCA bound to the cell surface by electrostatic interaction, which was dependent on the environmental pH and represented a distinctive binding mode in FTases. The catalytic and structural properties of InuCA will be contributed to the FTases engineering and the knowledge of the adaptation of L. crispatus in the vaginal environment. Importance L. crispatus is one of the most important species in human vaginal microbiotas and its persistence is strongly negatively correlated with the vaginal diseases. Our research reveals that a novel inulosucrase InuCA is present in L. cirspatus. InuCA keeps the ability to synthesize prebiotic fructo-oligosaccharides, although it lacks a large part of the C-terminal region compared to other FTases. Remarkably, the short C-terminus of InuCA blocks the transfructosylation activity for producing oligosaccharides with longer chain, which is meaningful to the directional modification of FTases and the oligosaccharide products. Besides the catalytic activity, InuCA is anchored on the cell surface dependent on the environmental pH and may be also involved in the adhesion of L. crispatus to the vaginal epithelial cells. Since L. crispatus plays an essential role in the normal vaginal micro-ecosystem, the described work will be helpful to elucidate the functional genes and colonization mechanism of the dominant species.
Collapse
|
21
|
Ni D, Zhang S, Kırtel O, Xu W, Chen Q, Öner ET, Mu W. Improving the Thermostability and Catalytic Activity of an Inulosucrase by Rational Engineering for the Biosynthesis of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13125-13134. [PMID: 34618455 DOI: 10.1021/acs.jafc.1c04852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermostability and enzymatic activity are two vital indexes determining the application of an enzyme on an industrial scale. A truncated inulosucrase, Laga-ISΔ138-702, from Lactobacillus gasseri showed high catalysis activity. To further enhance its thermostability and activity, multiple sequence alignment (MSA) and rational design based on the modeled structure were performed. Variants A446E, S482A, I614M, and A627S were identified with an improved denaturation temperature (Tm) of more than 1 °C. A combinational mutation method was further carried out to explore the synergistic promotion effects of single-point mutants. Additionally, 33 residues at the N-terminus were truncated to construct mutant M4N-33. The half-life of M4N-33 at 55 °C increased by 120 times compared to that of Laga-ISΔ138-702, and the relative activity of M4N-33 increased up to 152% at the optimal pH and temperature (pH 5.5 and 60 °C). Molecular dynamics (MD) simulations illustrated the decreased b-factor of the surface loop of M4N-33.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Onur Kırtel
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ebru Toksoy Öner
- IBSB─Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, 34722 Istanbul, Turkey
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
22
|
Zhao T, Yong X, Zhao Z, Dolce V, Li Y, Curcio R. Research status of Bacillus phytase. 3 Biotech 2021; 11:415. [PMID: 34485008 DOI: 10.1007/s13205-021-02964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
Phytic acid is abundant in seeds, roots and stems of plants, it acts as an anti-nutrient in food and feed industry, since it affects the absorption of nutrients by humans and monogastric animals. Furthermore, phosphorus produced through its decomposition by microorganisms can cause environmental pollution. Phytase degrades phytic acid generating precursors of inositol that can be used in clinical practice; in addition, phytase treatment can minimize the anti-nutritional effect of phytic acid. The use of phytase synthesized from Bacillus is more advantageous due to its high activity. Additionally, its good heat resistance under neutral conditions greatly fills the gap of commercial utilization of acid phytase. In this review, we summarize the latest research results on Bacillus phytase, including its physiological and biochemical characteristics, molecular structure information, calcium effects on its catalytic activity and stability, its catalytic mechanism and molecular modification.
Collapse
Affiliation(s)
- Ting Zhao
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Xihao Yong
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Faculty of Bioengineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Ziming Zhao
- Faculty of Bioengineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Yuan Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
23
|
Ni D, Kırtel O, Yin D, Xu W, Chen Q, Öner ET, Mu W. Improving the catalytic behaviors of Lactobacillus-derived fructansucrases by truncation strategies. Enzyme Microb Technol 2021; 149:109857. [PMID: 34311894 DOI: 10.1016/j.enzmictec.2021.109857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/17/2023]
Abstract
Fructansucrases (FSs), including inulosucrase (IS) and levansucrase (LS), are the members of the Glycoside Hydrolase family 68 (GH68) enzymes. IS and LS catalyze the polymerization of the fructosyl moiety from sucrose to inulin- and levan-type fructans, respectively. Lactobacillus-derived FSs have relatively extended N- and C-terminal sequences. However, the functional roles of these sequences in their enzymatic properties and fructan biosynthesis remain largely unknown. Limosilactobacillus reuteri (basionym: Lactobacillus reuteri) 121 could produce both IS and LS, abbreviated as Lare121-IS and Lare121-LS, respectively. In this study, it was found that the terminal truncation displayed an obvious effect on their activities and the N-terminal truncated variants, Lare121-ISΔ177-701 and Lare121-LSΔ154-686, displayed the highest activities. Melting temperature (Tm) and the thermostability at 50 °C were measured to evaluate the stability of various truncated versions, revealing the different effects of N-terminal on the stability. The average molecular weight and polymerization degree of the fructans produced by different truncated variants did not change considerably, indicating that N-terminal truncation had low influence on fructan biosynthesis. In addition, it was found that N-terminal truncation could also improve the activity of other reported FSs from Lactobacillus species.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Onur Kırtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
24
|
Guo L, Xiao P, Zhang X, Yang Y, Yang M, Wang T, Lu H, Tian H, Wang H, Liu J. Inulin ameliorates schizophrenia via modulation of the gut microbiota and anti-inflammation in mice. Food Funct 2021; 12:1156-1175. [PMID: 33432310 DOI: 10.1039/d0fo02778b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome-gut-brain (MGB) axis, which regulates neurological and cognitive functions, plays an essential role in schizophrenia (SCZ) progression. Dietary inulin could be a novel strategy for the treatment of SCZ due to its modulating effects on the gut microbiota. In this study, the effects of inulin on mice with SCZ were studied. As indicated by the behavioural tests, expression of neurotransmitters, inflammatory indicators, and brain morphology, inulin administration ameliorated aberrant behaviours (locomotor hypoactivity, anxiety disorders and depressive behaviours, and impaired learning and spatial recognition memory) and effectively reduced neuroinflammation and neuronal damage. In addition, inulin improved intestinal integrity and permeability, as indicated by the elevated expression of tight junction proteins (p < 0.05). The results of 16S rRNA sequencing and analysis showed that inulin increased the abundance of Lactobacillus and Bifidobacterium, which were negatively correlated with 5-hydroxytryptamine and inflammatory cytokines and positively correlated with brain-derived neurotrophic factor (BDNF). Inulin caused a reduction in Akkermansia that was positively correlated with inflammatory cytokines and negatively correlated with BDNF. These results suggested that dietary inulin modulated the gut microbiota and exerted anti-inflammatory effects in mice though the MGB axis, which further ameliorated SCZ. Therefore, the results of this study provide a potential explanation for inulin intervention in the treatment of SCZ.
Collapse
Affiliation(s)
- Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Peilun Xiao
- Department of Anatomy, Weifang Medical University, Weifang 261042, Shandong, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yang Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hongyan Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
25
|
Verma DK, Patel AR, Thakur M, Singh S, Tripathy S, Srivastav PP, Chávez-González ML, Gupta AK, Aguilar CN. A review of the composition and toxicology of fructans, and their applications in foods and health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
27
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
28
|
Liu X, Yang Q, He Z, Yao S. Efficacy and safety of inulin supplementation for functional constipation: a systematic review protocol. BMJ Open 2021; 11:e042597. [PMCID: PMC8039257 DOI: 10.1136/bmjopen-2020-042597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Functional constipation (FC) is a common digestive system disease, with an uptrend in morbidity and mortality, resulting in huge social and economic losses. Although the guidelines recommend lifestyle intervention as a first-line treatment, lifestyle intervention is not widely used in clinic. Inulin can be used as the basic material of functional food. Clinical studies have shown that inulin supplementation is associated with increased frequency of bowel movements, but has certain side effects. Therefore, the efficacy and safety of inulin in the treatment of FC need to be further evaluated. Methods and analysis We will search Medline, Web of Science, Embase, China National Knowledge Infrastructure Database, Wanfang Database and China Biomedical Literature Database. We will also search the China Clinical Trial Registry, the Cochrane Central Register of Controlled Trials and related conference summaries. This systematic review will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RevMan V.5.3.5 will be used for analysis. Ethics and dissemination This systematic review will evaluate the efficacy and safety of inulin supplementation for the treatment of FC. All included data will be obtained from published articles, there is no need for the ethical approval, and it will be published in a peer-reviewed journal. Due to lack of a new systematic review in this field, this study will combine relevant randomised controlled trials to better explore the evidence of inulin supplementation in the treatment of FC and guide clinical practice and clinical research. PROSPERO registration number CRD42020189234.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Gastroenterology of Traditional Chinese Medicine, Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Yang
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongning He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Medical Oncology, China Academy of Chinese Medical Sciences Guanganmen Hospital, Xicheng District, Beijing, China
| | - Shukun Yao
- Institute of Integrated Chinese and Western Medicine, Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
29
|
Abaramak G, Porras-Domínguez JR, Janse van Rensburg HC, Lescrinier E, Toksoy Öner E, Kırtel O, Van den Ende W. Functional and Molecular Characterization of the Halomicrobium sp. IBSBa Inulosucrase. Microorganisms 2021; 9:microorganisms9040749. [PMID: 33918392 PMCID: PMC8066391 DOI: 10.3390/microorganisms9040749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.
Collapse
Affiliation(s)
- Gülbahar Abaramak
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
| | - Jaime Ricardo Porras-Domínguez
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; (J.R.P.-D.); (H.C.J.v.R.)
| | | | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, P.O. Box 1041, 3000 Leuven, Belgium;
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
| | - Onur Kırtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul 34722, Turkey; (G.A.); (E.T.Ö.)
- Correspondence: (O.K.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; (J.R.P.-D.); (H.C.J.v.R.)
- Correspondence: (O.K.); (W.V.d.E.)
| |
Collapse
|
30
|
Cheng M, Wu H, Zhang W, Mu W. Difructose anhydride III: a 50-year perspective on its production and physiological functions. Crit Rev Food Sci Nutr 2021; 62:6714-6725. [PMID: 33775189 DOI: 10.1080/10408398.2021.1904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production and applications of difructose anhydride III (DFA-III) have attracted considerable attention because of its versatile physiological functions. Recently, large-scale production of DFA-III has been continuously explored, which opens a horizon for applications in the food and pharmaceutical industries. This review updates recent advances involving DFA-III, including: biosynthetic strategies, purification, and large-scale production of DFA-III; physiological functions of DFA-III and related mechanisms; DFA-III safety evaluations; present applications in food systems, existing problems, and further research prospects. Currently, enzymatic synthesis of DFA-III has been conducted both industrially and in academic research. Two biosynthetic strategies for DFA-III production are summarized: single- and double enzyme-mediated. DFA-III purification is achieved via yeast fermentation. Enzyme membrane bioreactors have been applied to meet the large-scale production demands for DFA-III. In addition, the primary physiological functions of DFA-III and their underlying mechanisms have been proposed. However, current applications of DFA-III are limited. Further research regarding DFA-III should focus on commercial production and purification, comprehensive study of physiological properties, extensive investigation of large-scale human experiments, and expansion of industrial applications. It is worthy to dig deep into potential application and commercial value of DFA-III.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Luca L, Oroian M. Influence of Different Prebiotics on Viability of Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus Encapsulated in Alginate Microcapsules. Foods 2021; 10:foods10040710. [PMID: 33810507 PMCID: PMC8065779 DOI: 10.3390/foods10040710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
As the production and maintenance of a sufficient number of microencapsulated probiotics is still a test for the food industry, the present study addressed the testing of three prebiotics: chicory inulin, soluble potato starch, oligofructose and a control carbon source, namely glucose, as a component part of the encapsulation matrix. Using the extrusion encapsulation technique, it was possible to obtain microcapsules whose matrix composition and dimensions correspond to the requirements of the food industry. The microcapsules obtained showed significantly different physicochemical properties, with different survival rates during processing, storage and in simulated gastrointestinal conditions. The encapsulation efficiency was very high in relation to the dimensions of the microcapsules and the technique used (between 87.00–88.19%). The microcapsules obtained offered a very good viability (between 8.30 ± 0.00–9.00 ± 0, 02 log10 cfu/g) during the 30 days of storage at 2–8 degrees and also in the simulated gastrointestinal conditions (between 7.98–8.22 log10 cfu/g). After 30 days, the lowest viability was registered in the microcapsules with glucose 6.78 ± 0.15 log10 cfu/g. It was found that after 4 h of action of gastrointestinal juices on the microcapsules stored for 30 days, cell viability falls within the limits recommended by the Food and Agriculture Organization of the United Nations (FAO) (106–107 CFU/mL or g of food. This study demonstrated that using prebiotic encapsulation matrix increases cell viability and protection and that the extrusion encapsulation method can be used in the production of probiotic microcapsules for the food industry.
Collapse
|
32
|
He H, Wu Y, Huang Y, Li X, Wang R, Yang JS, Liu XY, Qin Y. Stereoselective synthesis of α- d-fructofuranosides using a 4,6- O-siloxane-protected donor. Org Chem Front 2021. [DOI: 10.1039/d1qo00203a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient glycosylation method relying on the use of a 4,6-O-siloxane-protected thio-fructofuranoside donor is presented, which facilitated the stereoselective synthesis of α-d-fructofuranosides.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yanmei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Rui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province
- and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|
33
|
Wienberg F, Hövels M, Kosciow K, Deppenmeier U. High-resolution method for isocratic HPLC analysis of inulin-type fructooligosaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1172:122505. [PMID: 33895646 DOI: 10.1016/j.jchromb.2020.122505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
In recent decades, strategies to improve human health by modulating the gut microbiota have developed rapidly. One of the most prominent is the use of prebiotics, which can lead to a higher abundance of health-promoting microorganisms in the gut. Currently, oligosaccharides dominate the prebiotic sector due to their ability to promote the growth and activity of probiotic bacteria selectively. Extensive efforts are made to develop effective production strategies for the synthesis of prebiotic oligosaccharides, including the use of microbial enzymes. Within the genus Lactobacillus, several inulosucrases have been identified, which are suitable for the synthesis of prebiotic inulin-type fructooligosaccharides (inulin-FOS). In this study, a truncated version of the inulosucrase from Lactobacillus gasseri DSM 20604 was used for the efficient synthesis of inulin-FOS. Product titers of 146.2 ± 7.4 g inulin-FOSL-1 were achieved by the catalytic activity of the purified recombinant protein InuGB-V3. A time and resource-saving HPLC method for rapid analysis of inulin-FOS in isocratic mode was developed and optimized, allowing baseline separated analysis of inulin-FOS up to a degree of polymerization (DP) of five in less than six minutes. Long-chain inulin-FOS with a DP of 17 can be analyzed in under 45 min. The developed method offers the advantages of isocratic HPLC analysis, such as low flow rates, high sensitivity, and the use of a simple, inexpensive chromatographic setup. Furthermore, it provides high-resolution separation of long-chain inulin-FOS, which can usually only be achieved with gradient systems.
Collapse
Affiliation(s)
- Franziska Wienberg
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Konrad Kosciow
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Uwe Deppenmeier
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany.
| |
Collapse
|
34
|
Tonozuka T, Kitamura J, Nagaya M, Kawai R, Nishikawa A, Hirano K, Tamura K, Fujii T, Tochio T. Crystal structure of a glycoside hydrolase family 68 β-fructosyltransferase from Beijerinckia indica subsp. indica in complex with fructose. Biosci Biotechnol Biochem 2020; 84:2508-2520. [DOI: 10.1080/09168451.2020.1804317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
An enzyme belonging to glycoside hydrolase family 68 (GH68) from Beijerinckia indica subsp. indica NBRC 3744 was expressed in Escherichia coli. Biochemical characterization showed that the enzyme was identified to be a β-fructosyltransferase (BiBftA). Crystallization of a full-length BiBftA was initially attempted, but no crystals were obtained. We constructed a variant in which 5 residues (Pro199-Gly203) and 13 residues (Leu522-Gln534) in potentially flexible regions were deleted, and we successfully crystallized this variant BiBftA. BiBftA is composed of a five-bladed β-propeller fold as in other GH68 enzymes. The structure of BiBftA in complex with fructose unexpectedly indicated that one β-fructofuranose (β-Fruf) molecule and one β-fructopyranose molecule bind to the catalytic pocket. The orientation of β-Fruf at subsite −1 is tilted from the orientation observed in most GH68 enzymes, presenting a second structure of a GH68 enzyme in complex with the tilted binding mode of β-Fruf.
Collapse
Affiliation(s)
- Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Junichi Kitamura
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mika Nagaya
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Reika Kawai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Efficient production of inulin and oligosaccharides using thermostable inulosucrase from Lactobacillus jensenii. Int J Biol Macromol 2020; 165:1250-1257. [DOI: 10.1016/j.ijbiomac.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
|
36
|
Ni D, Xu W, Zhu Y, Pang X, Lv J, Mu W. Insight into the effects and biotechnological production of kestoses, the smallest fructooligosaccharides. Crit Rev Biotechnol 2020; 41:34-46. [PMID: 33153319 DOI: 10.1080/07388551.2020.1844622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kestoses, the smallest fructooligosaccharides, are trisaccharides composed of a fructose molecule and a sucrose molecule linked by either β-(2,1) or β-(2,6) linkage. 1-kestose, 6-kestose and neokestose are the three types of kestoses occurring in nature. As the main kind of fructooligosaccharide, kestoses share similar physiological effects with other fructooligosaccharides, and they have recently been determined to show more notable effects in promoting the growth of probiotics including Faecalibacterium prausnitzii and Bifidobacterium than those of other fructooligosaccharides. Kestoses exist in many plants, but the relatively low content and the isolation and purification are the main barriers limiting their industrial application. The production of kestoses by enzymatic biosynthesis and microbial fermentation has the potential to facilitate its production and industrial use. In this article, the recent advances in the research of kestoses were overviewed, including those studying their functions and production. Kestose-producing enzymes were introduced in detail, and microbial production and fermentation optimization techniques for enhancing the yield of kestoses were addressed. β-Fructofuranosidase is the main one used to produce kestoses because of the extensive range of microbial sources. Therefore, the production of kestoses by microorganisms containing β-fructofuranosidase has also been reviewed. However, few molecular modification studies have attempted to change the production profile of some enzymes and improve the yield of kestoses, which is a topic that should garner more attention. Additionally, the production of kestoses using food-grade microorganisms may be beneficial to their application in the food industry.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Ari B, Sahiner N. Biodegradable super porous inulin cryogels as potential drug carrier. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Betul Ari
- Faculty of Sciences and Arts, Chemistry Department Canakkale Onsekiz Mart University Çanakkale Turkey
| | - Nurettin Sahiner
- Faculty of Sciences and Arts, Chemistry Department Canakkale Onsekiz Mart University Çanakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC) Terzioglu Campus Canakkale Turkey
- Department of Ophthalmology University of South Florida Tampa Florida USA
| |
Collapse
|
38
|
Ni D, Zhu Y, Xu W, Pang X, Lv J, Mu W. Production and Physicochemical Properties of Food-Grade High-Molecular-Weight Lactobacillus Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5854-5862. [PMID: 32366099 DOI: 10.1021/acs.jafc.9b07894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inulin has been widely applied in food, pharmaceuticals, and many other fields because of its versatile physicochemical properties and physiological functions. Previous research showed that inulosucrase from microorganisms could produce higher-molecular-weight inulin than vegetal inulin. Herein, a food-grade recombinant Bacillus subtilis expression system was constructed to produce inulosucrase from Lactobacillus gasseri DSM 20604 without antibiotic resistance genes. The produced inulosucrase was used to biosynthesize inulin with an average molecular weight of 5.8 × 106 Da. The physicochemical properties of the produced Lactobacillus inulin were evaluated including microstructure, thermal characteristics, crystallinity, rheological behaviors, and storage stability. By comparing with vegetal inulin and other polymers, the biosynthesized microbial inulin showed some superior properties, such as better gel-forming capability and storage stability in aqueous solution than vegetal inulin. These results opened up possibilities for further investigations aimed at developing microbial inulin in the food industry.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
39
|
Wang P, Mo Y, Cui X, Ding X, Zhang X, Li Z. Hydrogen-Bond-Mediated Aglycone Delivery: Synthesis of β-d-Fructofuranosides. Org Lett 2020; 22:2967-2971. [PMID: 32223203 DOI: 10.1021/acs.orglett.0c00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The construction of β-d-fructofuranosidic linkages is one of the major challenges in carbohydrate chemistry. In this work, we developed an efficient method for the synthesis of β-d-fructofuranosides by using a 6-picoloyl-protected fructofuranosyl thioglycoside as the glycosyl donor. Subsequently, we applied the approach to a wide variety of donors and acceptors. Furthermore, the successful synthesis of levantetrose confirmed its applicability in the multistep synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yidian Mo
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiaoyu Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
40
|
Chen Y, Mi Y, Li Q, Dong F, Guo Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int J Biol Macromol 2020; 143:714-723. [DOI: 10.1016/j.ijbiomac.2019.09.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022]
|
41
|
Charoenwongpaiboon T, Wangpaiboon K, Panpetch P, Field RA, Barclay JE, Pichyangkura R, Kuttiyawong K. Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydr Polym 2019; 223:115044. [DOI: 10.1016/j.carbpol.2019.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
|
42
|
Puscaselu R, Gutt G, Amariei S. Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks. Molecules 2019; 24:E3136. [PMID: 31466392 PMCID: PMC6749578 DOI: 10.3390/molecules24173136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
In today's society, packaging is essential. Without this, the materials would be messy and ineffective. Despite the importance and key role of packaging, they are considered to be useless, as consumers see it as a waste of resources and an environmental threat. Biopolymer-based edible packaging is one of the most promising solutions to these problems. Thus, inulin, biopolymers such as agar and sodium alginate, and glycerol were used to develop a single use edible material for food packaging. These biofilms were obtained and tested for three months. For inulin-based films, the results highlight improvements not only in physical properties (homogeneity, well-defined margins, light sweet taste, good optical properties, high solubility capacity or, as in the case of some samples, complete solubilization), but also superior mechanical properties (samples with high inulin content into composition had high tensile strength and extremely high elongation values). Even after three months of developing, the values of mechanical properties indicate a strong material. The optimization establishes the composition necessary to obtain a strong and completely water-soluble material. This type of packaging represents a successful alternative for the future of food packaging: they are completely edible, biodegradable, compostable, obtained from renewable resources, and produce zero waste, at low cost.
Collapse
Affiliation(s)
- Roxana Puscaselu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania.
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| |
Collapse
|