1
|
Zhang W, Zhang H, Shang Y, Luo Y, Wu H, Wu H. High-Yield Biosynthesis of 3-Hydroxypropionic Acid from Acetate in Metabolically Engineered Escherichia coli. ACS Synth Biol 2025. [PMID: 40267313 DOI: 10.1021/acssynbio.5c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The third-generation biorefineries aimed at "carbon-negative" production of fuels and chemicals utilizing one-carbon molecules and renewable energy sources were raised to tackle the pressing climate change and food scarcity issues. Acetate derived from syngas fermentation, a viable nonfood carbon source, has recently been elevated in bulk chemicals biosynthesis. In this study, we successfully engineered Escherichia coli to produce 3-hydroxypropionic acid (3-HP) from acetate via the malonyl-CoA pathway. Initially, the constitutive promoter of the 3-HP biosynthetic pathway for efficient 3-HP production was screened in acetate-based medium. Then, efforts were focused on reducing the competition for malonyl-CoA by inhibiting the fatty acids (FAs) synthesis pathway. Furthermore, we enhanced the supply of NADPH and acetyl-CoA through cofactor engineering. The engineered strain ZWR18(M*DA) accumulated 5.53 g/L 3-HP, corresponding to a yield of 0.732 g/g, and achieved 97.60% of the theoretical yield. In whole-cell catalysis, ZWR18(M*DA) produced 23.89 g/L 3-HP with a yield of 0.734 g/g, reaching 97.87% of the theoretical yield. Utilizing syngas-derived acetate for whole-cell catalysis allowed ZWR18(M*DA) to accumulate 18.87 g/L 3-HP with a yield of 0.58 g/g. These results indicate that acetate from syngas can serve as a cost-effective and environmentally friendly alternative to traditional carbon sources, offering a sustainable biorefinery pathway for industrial biomanufacturing.
Collapse
Affiliation(s)
- Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongjun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Johnson ER, Joseph MR, Tullman-Ercek D. Engineering bacterial microcompartments to enable sustainable microbial bioproduction from C1 greenhouse gases. Curr Opin Biotechnol 2025; 93:103299. [PMID: 40158330 DOI: 10.1016/j.copbio.2025.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
One-carbon (C1) greenhouse gases are the primary driver of global climate change. Fermenting these gases into higher-value products is an attractive strategy for climate action and sustainable development. C1 gas-fermenting bacteria are promising chassis organisms, but various technical challenges hinder scale-up to industrial production levels. Bacterial microcompartments (MCPs), proteinaceous organelles that encapsulate enzymatic pathways, may confer several metabolic benefits to increase the industrial potential of these bacteria. Many species of gas-fermenting bacteria are already predicted to natively produce MCPs. Here, we describe how these organelles can be identified and engineered to encapsulate pathways that convert C1 gases into valuable chemical products.
Collapse
Affiliation(s)
- Elizabeth R Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Madeline R Joseph
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA; Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
3
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Sá GCDS, Bezerra PVV, Ramos EO, Orsato A, Leite K, Feio AM, Pimentel LMS, Alves JDA, Gomes GS, Rodrigues PD, Quintella CM, Fragoso SP, da Silva EC, Uchôa AF, dos Santos SC. Pseudomonas aeruginosa Rhamnolipids Produced by Andiroba ( Carapa guianensis Aubl.) (Sapindales: Meliaceae) Biomass Waste from Amazon: A Potential Weapon Against Aedes aegypti L. (Diptera: Culicidae). Molecules 2025; 30:618. [PMID: 39942722 PMCID: PMC11821126 DOI: 10.3390/molecules30030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates the use of andiroba (Carapa guianensis Aubl.) biomass waste as a substrate for synthesizing a rhamnolipid biosurfactant (BSAW) produced by Pseudomonas aeruginosa and evaluates its insecticidal activity against A. aegypti. The findings indicate a biosurfactant yield of 4.42 mg mL-1, alongside an emulsification index approaching 60%. BSAW successfully reduced both surface and interfacial tensions to below 30 mN/m and 4 mN/m, respectively. Characterization revealed that BSAW is a di-rhamnolipid, consisting of two rhamnose units covalently linked to a saturated C10 fatty acid chain. At a concentration of 1.0 mg mL-1, BSAW exhibited notable larvicidal activity, leading to structural impairments and cellular dysfunctions in A. aegypti larvae while also disrupting their associated bacterial microbiota. Moreover, BSAW effectively deterred oviposition in adult mosquitoes. These findings underscore BSAW's potential to compromise various developmental stages of A. aegypti, supporting integrated arbovirus management approaches. Furthermore, this research emphasizes the feasibility of utilizing agro-industrial waste as substrates for microbial rhamnolipid production.
Collapse
Affiliation(s)
- Giulian César da Silva Sá
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Pedro Vitor Vale Bezerra
- Laboratório de Proteomas, Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (P.V.V.B.); (A.F.U.)
| | - Evelly Oliveira Ramos
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Alexandre Orsato
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil; (A.O.); (K.L.)
| | - Karoline Leite
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil; (A.O.); (K.L.)
| | - Alan Moura Feio
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Lucas Mariano Siqueira Pimentel
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Joane de Almeida Alves
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Glenda Soares Gomes
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Pamela Dias Rodrigues
- Laboratório de Cinética e Dinâmica Molecular, Departamento de Química Inorgânica e Geral, Universidade Federal da Bahia (UFBA), Salvador 40170-115, BA, Brazil; (P.D.R.); (C.M.Q.)
| | - Cristina M. Quintella
- Laboratório de Cinética e Dinâmica Molecular, Departamento de Química Inorgânica e Geral, Universidade Federal da Bahia (UFBA), Salvador 40170-115, BA, Brazil; (P.D.R.); (C.M.Q.)
| | - Sinara Pereira Fragoso
- Laboratório de Tecnologia de Alimentos, Universidade Federal da Paraíba (UFPB), Centro de Tecnologia, João Pessoa 58051-900, PB, Brazil;
| | - Emilly Cruz da Silva
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil;
| | - Adriana Ferreira Uchôa
- Laboratório de Proteomas, Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (P.V.V.B.); (A.F.U.)
| | - Sidnei Cerqueira dos Santos
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| |
Collapse
|
5
|
Wang X, Hou J, Cui J, Wang Z, Chen T. Engineering Corynebacterium glutamicum for the efficient production of 3-hydroxypropionic acid from glucose via the β-alanine pathway. Synth Syst Biotechnol 2024; 9:752-758. [PMID: 39007091 PMCID: PMC11245886 DOI: 10.1016/j.synbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
3-Hydroxypropionic Acid (3-HP) is recognized as a high value-added chemical with a broad range of applications. Among the various biosynthetic pathways for 3-HP production, the β-alanine pathway is particularly noteworthy due to its capacity to generate 3-HP from glucose at a high theoretical titer. In this study, the β-alanine biosynthesis pathway was introduced and optimized in Corynebacterium glutamicum. By strategically regulating the supply of precursors, we successfully engineered a strain capable of efficiently synthesizing 3-HP through the β-alanine pathway, utilizing glucose as the substrate. The engineered strain CgP36 produced 47.54 g/L 3-HP at a yield of 0.295 g/g glucose during the fed-batch fermentation in a 5 L fermenter, thereby attaining the highest 3-HP titer obtained from glucose via the β-alanine pathway.
Collapse
Affiliation(s)
- Xiaodi Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junyuan Hou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jieyao Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Chen T, Zhang Y, Yun J, Zhao M, Zhang C, Chen Z, Zabed HM, Sun W, Qi X. Bioproduction of 3-Hydroxypropionic Acid by Enhancing the Precursor Supply with a Hybrid Pathway and Cofactor Regeneration. ACS Synth Biol 2024; 13:3366-3377. [PMID: 39323185 DOI: 10.1021/acssynbio.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
3-Hydroxypropionic acid (3-HP) is one of the 12 valuable platform chemicals with versatile applications in the chemical, food, and cosmetic industries. However, the biosynthesis of 3-HP faces challenges due to the lack of robust chassis and the high costs associated with the fermentation process. To address these challenges, we made efforts to augment the robustness of 3-HP-producing chassis by exploiting metabolic regulation, controlling carbon flux, balancing cofactor generation, and optimizing fermentation conditions. First, the malonyl-CoA (MCA) pathway was recruited and rebalanced in Escherichia coli. Subsequently, a hybrid pathway integrating the Embden-Meyerhof-Parnas pathway with the nonoxidative glycolysis pathway was systematically modulated to enhance carbon flux to the MCA pathway, followed by fine-tuning NADPH regeneration. Then, by optimizing the fermentation conditions, 3-HP production was significantly improved, reaching 6.8 g/L. Finally, in a fed-batch experiment, the final chassis produced 42.8 g/L 3-HP, corresponding to a 0.4 mol/mol yield and 0.6 g/(L·h) productivity.
Collapse
Affiliation(s)
- Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
7
|
Cavuzic MT, de Sousa AS, Lohman JR, Waldrop GL. Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141033. [PMID: 39019246 DOI: 10.1016/j.bbapap.2024.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Malonyl-CoA reductase utilizes two equivalents of NADPH to catalyze the reduction of malonyl-CoA to 3-hydroxypropionic acid (3HP). This reaction is part of the carbon fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. The enzyme is composed of two domains. The C-terminal domain catalyzes the reduction of malonyl-CoA to malonic semialdehyde, while the N-terminal domain catalyzes the reduction of the aldehyde to 3HP. The two domains can be produced independently and retain their enzymatic activity. This report focuses on the kinetic characterization of the C-terminal domain. Initial velocity patterns and inhibition studies showed the kinetic mechanism is ordered with NADPH binding first followed by malonyl-CoA. Malonic semialdehyde is released first, while CoA and NADP+ are released randomly. Analogs of malonyl-CoA showed that the thioester carbon is reduced, while the carboxyl group is needed for proper positioning. The enzyme transfers the pro-S hydrogen of NADPH to malonyl-CoA and pH rate profiles revealed that a residue with a pKa value of about 8.8 must be protonated for activity. Kinetic isotope effects indicated that NADPH is not sticky (that is, NADPH dissociates from the enzyme faster than the rate of product formation) and product release is partially rate-limiting. Moreover, the mechanism is stepwise with the pH dependent step occurring before or after hydride transfer. The findings from this study will aid in the development of an eco-friendly biosynthesis of 3HP which is an industrial chemical used in the production of plastics and adhesives.
Collapse
Affiliation(s)
- Mirela Tkalcic Cavuzic
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| | - Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Jeremy R Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| |
Collapse
|
8
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Zhou L, Zhang Y, Chen T, Yun J, Zhao M, Zabed HM, Zhang C, Qi X. Metabolic Remodulation of Chassis and Corn Stover Bioprocessing to Unlock 3-Hydroxypropionic Acid Biosynthesis from Agrowaste-Derived Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2536-2546. [PMID: 38261597 DOI: 10.1021/acs.jafc.3c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Embracing the principles of sustainable development, the valorization of agrowastes into value-added chemicals has nowadays received significant attention worldwide. Herein, Escherichia coli was metabolically rewired to convert cellulosic hydrolysate of corn stover into a key platform chemical, namely, 3-hydroxypropionic acid (3-HP). First, the heterologous pathways were introduced into E. coli by coexpressing glycerol-3-P dehydrogenase and glycerol-3-P phosphatase in both single and fusion (gpdp12) forms, making the strain capable of synthesizing glycerol from glucose. Subsequently, a glycerol dehydratase (DhaB123-gdrAB) and an aldehyde dehydrogenase (GabD4) were overexpressed to convert glycerol into 3-HP. A fine-tuning between glycerol synthesis and its conversion into 3-HP was successfully established by 5'-untranslated region engineering of gpdp12 and dhaB123-gdrAB. The strain was further metabolically modulated to successfully prevent glycerol flux outside the cell and into the central metabolism. The finally remodulated chassis produced 32.91 g/L 3-HP from the cellulosic hydrolysate of stover during fed-batch fermentation.
Collapse
Affiliation(s)
- Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| |
Collapse
|
10
|
Zhang Y, Yun J, Zhang G, Parvez A, Zhou L, Zabed HM, Li J, Qi X. Efficient biosynthesis of 3-hydroxypropionic acid from glucose through multidimensional engineering of Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 389:129822. [PMID: 37805087 DOI: 10.1016/j.biortech.2023.129822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
3-Hydroxypropionic acid (3-HP) is a top value-added chemical with multifaceted application in chemical, material, and food field. However, limited availability of robust strains and elevated fermentation costs currently impose constraints on sustainable biosynthesis of 3-HP. Herein, transporter engineering, metabolic dynamic modulation, and enzyme engineering were combined to address above limitations. First, a glucose-utilizing 3-HP biosynthetic pathway was constructed in Escherichia coli, followed by recruiting alternative glucose transport system to overcome center metabolism overflow. Next, the Cra (a transcription factor)-dependent switch was applied to autonomously fine-tune carbon flux, which alleviated growth retardation and improved the 3-HP production. Subsequently, inactivation of glycerol facilitator (GlpF) increased intracellular glycerol levels and boosted 3-HP biosynthesis, but caused toxic intermediate 3-hydroxypropionaldehyde (3-HPA) accumulation. Furthermore, semi-rational design of aldehyde dehydrogenase (YdcW) increased its activity and eliminated 3-HPA accumulation. Finally, fed-batch fermentation of the final strain resulted in 52.73 g/L 3-HP, with a yield of 0.59 mol/mol glucose.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
11
|
Liu S, Sun Y, Wei T, Gong D, Wang Q, Zhan Z, Song J. Engineering 3-Hydroxypropionic Acid Production from Glucose in Yarrowia lipolytica through Malonyl-CoA Pathway. J Fungi (Basel) 2023; 9:jof9050573. [PMID: 37233284 DOI: 10.3390/jof9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important intermediate compound in the chemical industry. Green and environmentally friendly microbial synthesis methods are becoming increasingly popular in a range of industries. Compared to other chassis cells, Yarrowia lipolytica possesses advantages, such as high tolerance to organic acid and a sufficient precursor required to synthesize 3-HP. In this study, gene manipulations, including the overexpression of genes MCR-NCa, MCR-CCa, GAPNSm, ACC1 and ACSSeL641P and knocking out bypass genes MLS1 and CIT2, leading to the glyoxylate cycle, were performed to construct a recombinant strain. Based on this, the degradation pathway of 3-HP in Y. lipolytica was discovered, and relevant genes MMSDH and HPDH were knocked out. To our knowledge, this study is the first to produce 3-HP in Y. lipolytica. The yield of 3-HP in recombinant strain Po1f-NC-14 in shake flask fermentation reached 1.128 g·L-1, and the yield in fed-batch fermentation reached 16.23 g·L-1. These results are highly competitive compared to other yeast chassis cells. This study creates the foundation for the production of 3-HP in Y. lipolytica and also provides a reference for further research in the future.
Collapse
Affiliation(s)
- Shiyu Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yao Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Tianhui Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Dianliang Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Zhe Zhan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
12
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
13
|
Garg A, Jers C, Hwang HJ, Kalantari A, Ventina I, Mijakovic I. Engineering Bacillus subtilis for production of 3-hydroxypropanoic acid. Front Bioeng Biotechnol 2023; 11:1101232. [PMID: 36726744 PMCID: PMC9885095 DOI: 10.3389/fbioe.2023.1101232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that is used as a precursor for several higher value-added chemical products. There is an increased interest in development of cell factories as a means for the synthesis of 3-HP and various other platform chemicals. For more than a decade, concentrated effort has been invested by the scientific community towards developing bio-based approaches for the production of 3-HP using primarily Escherichia coli and Klebsiella pneumoniae as production hosts. These hosts however might not be optimal for applications in e.g., food industry due primarily to endotoxin production and the pathogenic origin of particularly the K. pneumoniae. We have previously demonstrated that the generally recognized as safe organism Bacillus subtilis can be engineered to produce 3-HP using glycerol, an abundant by-product of the biodiesel industry, as substrate. For commercial exploitation, there is a need to substantially increase the titer. In the present study, we optimized the bioprocess conditions and further engineered the B. subtilis 3-HP production strain. Thereby, using glycerol as substrate, we were able to improve 3-HP production in a 1-L bioreactor to a final titer of 22.9 g/L 3-HP.
Collapse
Affiliation(s)
- Abhroop Garg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Hee Jin Hwang
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden,Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, South Korea
| | - Aida Kalantari
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ildze Ventina
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Ivan Mijakovic,
| |
Collapse
|