1
|
Xie Z, Fan X, Sallam AS, Dong W, Sun Y, Zeng X, Liu Z. Extraction, isolation, identification and bioactivity of anthraquinones from Aspergillus cristatus derived from Fuzhaun brick tea. Food Chem 2025; 474:143104. [PMID: 39914350 DOI: 10.1016/j.foodchem.2025.143104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 03/01/2025]
Abstract
Aspergillus cristatus, a probiotic fungus isolated from Fuzhuan brick tea (FBT), produces various valuable but uncharacterized secondary metabolites. We hypothesized that diverse anthraquinones metabolized by A. cristatus possess promising bioactivities and influence fermentation process of FBT. In this study, five benzaldehyde derivatives, three indolediketopiperazine alkaloids and twelve anthraquinones were profiled from A. cristatus, and the methods for extracting and purifying anthraquinones were established. Twelve anthraquinones were identified as (+)-variecolorquinone A, fallacinol, (+)1-O-demethylvariecolorquinone A, dermolutein, citreorosein, endocrocin, questin, rubrocristin, emodin, catenarin, physcion and erythroglaucin, providing clues for deducing their biosynthetic pathways. Functionally, these compounds demonstrated antioxidant, anti-inflammatory and antibacterial effects. Notably, emodin, catenarin, citreorosein and erythroglaucin exhibited remarkable anti-inflammatory activity. Furthermore, the antibacterial metabolites, especially emodin and catenarin, demonstrated potent antibacterial properties against Escherichia coli and Staphylococcus aureus, elucidating that A. cristatus antagonized pathogens during FBT production. Collectively, these anthraquinones hold promise as stable colorants and effective preservatives in food industry.
Collapse
Affiliation(s)
- Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Abubakr S Sallam
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
2
|
Thakral F, Prasad B, Sehgal R, Gupta S, Sharma U, Singh BJ, Sharma B, Tuli HS, Haque S, Ahmad F. Role of emodin to prevent gastrointestinal cancers: recent trends and future prospective. Discov Oncol 2025; 16:468. [PMID: 40186678 PMCID: PMC11972247 DOI: 10.1007/s12672-025-02240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Gastrointestinal malignancies are responsible for approximately 35% of all cancer-related deaths, underscoring the critical need to explore pharmacologically active molecules for chemoprevention. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a natural compound derived from traditional Chinese and Japanese medicine, has recently garnered significant attention for its potential anticancer properties. Emodin exerts its chemoprotective effects through a combination of antioxidative, anti-inflammatory, and anti-proliferative mechanisms. Research indicates that emodin inhibits cancer metastasis, disrupts cell cycle progression, and impairs cancer cell survival. These effects are mediated through the activation of the p38 MAPK/JNK1/2 signaling pathway, the upregulation of pro-apoptotic factors such as Bax/Bcl-2 and caspases, and the enhancement of reactive oxygen species (ROS) levels (Supplementary Fig. 1). To optimize emodin's therapeutic potential, it is crucial to further investigate its underlying mechanisms of action and develop advanced nano-targeted delivery systems to enhance its bioavailability. This review highlights emodin's promise as a chemopreventive agent for gastrointestinal cancers and emphasizes its potential for development into a novel clinical formulation.
Collapse
Affiliation(s)
- Falak Thakral
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Rippin Sehgal
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, Haryana, 133101, India
| | | | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bikram Jit Singh
- Mechanical Engineering Department, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, 091952, Ecuador
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Zhang F, Ma C, Zhu M, Chen Y, Wang W, Zhang G, Zhu T, Che Q, Li D. Biosynthesis of Dothideomins Reveals a Fungal P450 That Constructs the Tricyclo[5.2.2.0. 4,8]undecane-Imbedded Core Skeleton. J Am Chem Soc 2025; 147:7094-7102. [PMID: 39950909 DOI: 10.1021/jacs.4c18595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Dothideomins are antibacterial bis(anthraquinone) polyketides isolated from the endophytic fungus Dothideomycetes sp. BMC-101, featuring a unique 6/6/6/5/6/6/6 heptacyclic scaffold imbedded with a tricyclo[5.2.2.0.4,8]undecane core. Although the structures and antibacterial potential are attractive, the biosynthesis process and the formation of a heptacyclic scaffold, especially the tricyclo[5.2.2.0.4,8]undecane cage-like core, are unclear. Here, we elucidated the biosynthesis of dothideomins C and D encoded by a dot gene cluster through heterologous expression, in vivo feeding experiments, and in vitro biochemical assays. Our findings reveal an enzyme cascade involved in the conversion of the precursor emodin into dothideomins. Specifically, the cytochrome P450 monooxygenase DotG is shown to solely catalyze the unprecedented formation of triple C-C bonds and construct the tricyclo[5.2.2.0.4,8]undecane-embedded skeleton. This study enhances the comprehension of the P450 enzyme-controlled formation of complex natural products.
Collapse
Affiliation(s)
- Falei Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Chuanteng Ma
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
| | - Meilin Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Yinghan Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wenxue Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
| | - Qian Che
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
| | - Dehai Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Sanya Oceanographic Institute, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Sanya 266003, Qingdao 572025, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Tang Q, Li Z, Chen N, Luo X, Zhao Q. Natural pigments derived from plants and microorganisms: classification, biosynthesis, and applications. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:592-614. [PMID: 39642082 PMCID: PMC11772333 DOI: 10.1111/pbi.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 12/08/2024]
Abstract
Pigments, as coloured secondary metabolites, endow the world with a rich palette of colours. They primarily originate from plants and microorganisms and play crucial roles in their survival and adaptation processes. In this article, we categorize pigments based on their chemical structure into flavonoids, carotenoids, pyrroles, quinones, azaphilones, melanins, betalains, flavins, and others. We further meticulously describe the colours, sources, and biosynthetic pathways, including key enzymatic steps and regulatory networks that control pigment production, in both plants and microorganisms. In particular, we highlight the role of transport proteins and transcription factors in fine-tuning these pathways. Finally, we introduce the use of pigments in practical production and research, aiming to provide new insights and directions for the application of coloured compounds in diverse fields, such as agriculture, industry, and medicine.
Collapse
Affiliation(s)
- Qian Tang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- School of Applied BiologyCity Polytechnic of ShenzhenShenzhenChina
| | - Zhibo Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ningxin Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Arias RS, Cantonwine EG, Orner VA, Walk TE, Massa AN, Stewart JE, Dobbs JT, Manchester A, Higbee PS, Lamb MC, Sobolev VS. Characterizing phenotype variants of Cercosporidium personatum, causal agent of peanut late leaf spot disease, their morphology, genetics and metabolites. Sci Rep 2025; 15:1405. [PMID: 39789282 PMCID: PMC11718120 DOI: 10.1038/s41598-025-85953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN. We characterized, for the first time in CP, anthraquinone (AQ) precursors of dothistromin (DOT), including averantin, averufin, norsolorinic acid, versicolorin B, versicolorin A, nidurufin and averufanin. BROWN had the highest AQ and melanin (15 mg/g DW) contents. RED had the highest ergosterol (855 µM FW) and chitin (beta-glucans, 4% DW) contents. RED and TAN had higher resistance to xenobiotics (p ≤ 1.0E-3), including chlorothalonil, tebuconazole and caffeine, compared to CP NRRL 64,463. In RED, TAN, and BROWN, rates of single nucleotide polymorphisms (SNP) (1.4-1.7 nt/kb) and amino acid changes (3k-4k) were higher than in NRRL 64,463. Differential gene expression (p ≤ 1.0E-5) was observed in 47 pathogenicity/virulence genes, 41 carbohydrate-active enzymes (CAZymes), and 23 pigment/mycotoxin biosynthesis genes. We describe the MAT1 locus, and a method to evaluate CP-xenobiotic resistance in 5 days. Chemical profiles indicate each CP morphotype could trigger different immune response in plants, probably hindering development of durable LLS resistance.
Collapse
Affiliation(s)
- Renee S Arias
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA.
| | - Emily G Cantonwine
- Valdosta State University, 1500 N. Patterson St, Valdosta, GA, 31698, USA
| | - Valerie A Orner
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Travis E Walk
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Alicia N Massa
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, 301 University Ave, Fort Collins, CO, USA
| | - John T Dobbs
- Department of Agricultural Biology, Colorado State University, 301 University Ave, Fort Collins, CO, USA
| | - Atalya Manchester
- Valdosta State University, 1500 N. Patterson St, Valdosta, GA, 31698, USA
| | - Pirada S Higbee
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Marshall C Lamb
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Victor S Sobolev
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| |
Collapse
|
6
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Polygala japonica Houtt.: A comprehensive review on its botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics. Fitoterapia 2024; 179:106233. [PMID: 39326795 DOI: 10.1016/j.fitote.2024.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Polygala japonica Houtt. (P. japonica), a member of the Polygala genus in the Polygalaceae family, has been historically utilized in traditional folk medicine as an expectorant, anti-inflammatory, anti-bacterial, and anti-depressant agent. This paper systematically reviews the latest research in botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics, aiming to provide a scientific foundation for the future development and application of P. japonica and to explore its potential value comprehensively. Approximately 86 compounds have been isolated from P. japonica, with triterpenoid saponins being the most prevalent and bioactive components. Extensive pharmacological activities of P. japonica extracts or compounds have been confirmed in vivo and in vitro, including anti-inflammatory, anti-depressant, neuroprotective, anti-obesity, anti-apoptotic, and skin-protective effects. Additionally, P. japonica has demonstrated significant curative effects and relatively clear pharmacological mechanisms in treating inflammatory and nervous system diseases. Specific components of its primary triterpenoid saponins are rapidly absorbed in the body. This review advocates for deeper scientific research on P. japonica, noting that most current research remains in its early stages and many reported biological activities require further clinical validation. Despite this, the traditional medical use of P. japonica across various cultures attests to its broad application value. Presently, the pharmacological activities of P. japonica extracts and compounds provide a scientific basis for its traditional uses. Future research must ensure the safety and effectiveness of P. japonica through in-depth pharmacokinetic studies, and the establishment of a refined and standardized quality evaluation system is essential for its clinical development and application.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
7
|
Tang J, Li YM, Wang Y, Yan F, Feng Z, Lv RH, Gao J, Peng L, Hu XC, Zhang G. Comparative transcriptome analysis and identification of candidate bZIP transcription factors involved in anthraquinone biosynthesis in Rheum officinale Baill. Genomics 2024; 116:110948. [PMID: 39384163 DOI: 10.1016/j.ygeno.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Rhubarb is a traditional medicinal plant in China, whose pharmacological effects derive mainly from its anthraquinones. However, the regulatory mechanism affecting anthraquinone biosynthesis in R. officinale remains poorly understood. We assembled a high-quality, full-length transcriptome using single-molecule real-time (SMRT) sequencing. 274 unigenes potentially involved in the biosynthesis of anthraquinones, including those in the shikimate, polyketide, MVA and MEP pathways, were identified based on full-length transcriptome. Differentially expressed genes (DEGs) induced by MeJA treatment and DEGs between different tissues were identified through next-generation sequencing (NGS), revealing the genes that may be involved in the biosynthesis of anthraquinones. The basic leucine zipper (bZIP) transcription factors of R. officinale were systematically identified. Key genes such as RobZIP50 and RobZIP53 were systematically identified and found to be associated with anthraquinone biosynthesis in R. officinale through differential expression, co-expression and protein interaction analyses. RobZIP50 and RobZIP53 were highly expressed in roots and rhizomes, and significantly increased after 12 h of MeJA treatment. Additionally, both RobZIP50 and RobZIP53 were localized exclusively in the nucleus, with RobZIP53 showing significant transcriptional activity. Taken together, our results suggest that RobZIP53 may play a role in regulating anthraquinone biosynthesis in R. officinale.
Collapse
Affiliation(s)
- Jing Tang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yi-Min Li
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yan Wang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Feng Yan
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Zhao Feng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Rui-Hua Lv
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jing Gao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Liang Peng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Xiao-Chen Hu
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Gang Zhang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China; State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
8
|
Shama SM, Elissawy AM, Salem MA, Youssef FS, Elnaggar MS, El-Seedi HR, Khalifa SAM, Briki K, Hamdan DI, Singab ANB. Comparative metabolomics study on the secondary metabolites of the red alga, Corallina officinalis and its associated endosymbiotic fungi. RSC Adv 2024; 14:18553-18566. [PMID: 38903055 PMCID: PMC11187739 DOI: 10.1039/d4ra01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Marine endosymbionts have gained remarkable interest in the last three decades in terms of natural products (NPs) isolated thereof, emphasizing the chemical correlations with those isolated from the host marine organism. The current study aimed to conduct comparative metabolic profiling of the marine red algae Corallina officinalis, and three fungal endosymbionts isolated from its inner tissues namely, Aspergillus nidulans, A. flavipes and A. flavus. The ethyl acetate (EtOAc) extracts of the host organism as well as the isolated endosymbionts were analyzed using ultra-high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-MS/MS)in both positive and negative ion modes, applying both full scan (FS) and all ion fragmentation (AIF) modes. Extensive interpretation of the LC-MS/MS spectra had led to the identification of 76 metabolites belonging to different phytochemical classes including alkaloids, polyketides, sesquiterpenes, butyrolactones, peptides, fatty acids, isocoumarins, quinones, among others. Metabolites were tentatively identified by comparing the accurate mass and fragmentation pattern with metabolites previously reported in the literature, as well as bioinformatics analysis using GNPS. A relationship between the host C. officinalis and its endophytes (A. flavus, A. nidulans, and A. flavipes) was discovered. C. officinalis shares common metabolites with at least one of the three endosymbiotic fungi. Some metabolites have been identified in endophytes and do not exist in their host. Multivariate analysis (MVA) revealed discrimination of A. flavipes from Corallina officinalis and other associated endophytic Aspergillus fungi (A. flavus and A. nidulans).
Collapse
Affiliation(s)
- Sherif M Shama
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah P. O. Box: 170 Madinah 42351 Saudi Arabia
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University Zhenjiang 212013 China
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital Sankt Göransplan 1 112 19 Stockholm Sweden
| | - Khaled Briki
- Laboratory of Organic Chemistry and Natural Substance, University Ziane Achour Djelfa Algeria
| | - Dalia Ibrahim Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| |
Collapse
|
9
|
Petijová L, Henzelyová J, Kuncová J, Matoušková M, Čellárová E. In silico prediction of polyketide biosynthetic gene clusters in the genomes of Hypericum-borne endophytic fungi. BMC Genomics 2024; 25:555. [PMID: 38831295 PMCID: PMC11149221 DOI: 10.1186/s12864-024-10475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.
Collapse
Affiliation(s)
- Linda Petijová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia.
| | - Jana Henzelyová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Júlia Kuncová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Martina Matoušková
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Eva Čellárová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| |
Collapse
|
10
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
11
|
Zhao X, Yan F, Li YM, Tang J, Hu XC, Feng Z, Gao J, Peng L, Zhang G. Comparative transcriptome analysis and identification of candidate R2R3-MYB genes involved in anthraquinone biosynthesis in Rheum palmatum L. Chin Med 2024; 19:23. [PMID: 38317158 PMCID: PMC10845799 DOI: 10.1186/s13020-024-00891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Rheum palmatum L. has important medicinal value because it contains biologically active anthraquinones. However, the key genes and TFs involved in anthraquinone biosynthesis and regulation in R. palmatum remain unclear. METHODS Based on full length transcriptome data, in this study, we screened the differentially expressed genes in the anthraquinone biosynthesis pathway. The R2R3-MYB family genes of R. palmatum were systematically identified based on full-length transcriptome sequencing followed by bioinformatics analyses. The correlation analysis was carried out by using co-expression analysis, protein interaction analysis, and real-time fluorescence quantitative analysis after MeJA treatment. The RpMYB81 and RpMYB98 genes were amplified by RT-PCR, and their subcellular localization and self-activation characteristics were analyzed. RESULTS Comparative transcriptome analysis results revealed a total of 3525 upregulated and 6043 downregulated DEGs in the CK versus MeJA group; 28 DEGs were involved in the anthraquinone pathway. Eleven CHS genes that belonged to the PKS family were differentially expressed and involved in anthraquinone biosynthesis. Twelve differentially expressed MYBs genes were found to be co-expressed and interact with CHS genes. Furthermore, 52 MYB genes were identified as positive regulators of anthraquinone biosynthesis and were further characterized. Three MYB genes including RpMYB81, RpMYB98, and RpMYB100 responded to MeJA treatment in R. palmatum, and the levels of these genes were verified by qRT-PCR. RpMYB81 was related to anthraquinone biosynthesis. RpMYB98 had an interaction with genes in the anthraquinone biosynthesis pathway. RpMYB81 and RpMYB98 were mainly localized in the nucleus. RpMYB81 had self-activation activity, while RpMYB98 had no self-activation activity. CONCLUSION RpMYB81, RpMYB98, and RpMYB100 were significantly induced by MeJA treatment. RpMYB81 and RpMYB98 are located in the nucleus, and RpMYB81 has transcriptional activity, suggesting that it might be involved in the transcriptional regulation of anthraquinone biosynthesis in R. palmatum.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Yan
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi-Min Li
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Jing Tang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Chen Hu
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhao Feng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Gao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Liang Peng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Gang Zhang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| |
Collapse
|
12
|
Reza MZ, Oppong-Danquah E, Tasdemir D. The Impact of the Culture Regime on the Metabolome and Anti-Phytopathogenic Activity of Marine Fungal Co-Cultures. Mar Drugs 2024; 22:66. [PMID: 38393037 PMCID: PMC10890130 DOI: 10.3390/md22020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.
Collapse
Affiliation(s)
- Mohammed Zawad Reza
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany; (M.Z.R.); (E.O.-D.)
| | - Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany; (M.Z.R.); (E.O.-D.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany; (M.Z.R.); (E.O.-D.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
13
|
Dhanamjayulu P, Boga RB, Das R, Mehta A. Control of aflatoxin biosynthesis by sulfur containing benzimidazole derivatives: In-silico interaction, biological activity, and gene regulation of Aspergillus flavus. J Biotechnol 2023; 376:33-44. [PMID: 37748651 DOI: 10.1016/j.jbiotec.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Aspergillus flavus producing aflatoxins is one of the potent contaminants of raw food commodities during pre-and post-harvest crops. Aflatoxins are the group of secondary metabolites a subset of natural polyketides. Our major focus is on the inhibition of the biosynthesis pathway of aflatoxin by targeting the enzymes involved. Benzimidazoles are known antimicrobial compounds. In this study the sulfur containing benzimidazole derivatives were tested for their antifungal and antiaflatoxigenic activity. The fungal growth and aflatoxin production was analysed in culture medium as well as in the rice. Inhibition of specific genes was studied in terms of mRNA expression and the interaction of test compound with polyketide synthases by in-silico molecular docking. Substitution at the 6th position of 2-(2-thienyl) benzimidazole (2-TBD) reduced the antifungal property of benzimidazole but effectively inhibited the aflatoxin synthesis in the culture medium as well as in the rice from the toxigenic strain of A. flavus. Among the derivatives tested, the methyl group containing 2-(2-thienyl)- 6-methylbenzimidazole (6-MTBD) inhibited aflatoxin B1 most effectively followed by carboxylic group containing 2-(2-thienyl) benzimidazole-6-carboxylic acid (6-TBCA) with IC50 value of 12.36 and 18.25 µg/mL respectively. Molecular docking study shows that 2-(2-thienyl) benzimidazole-6-carbonitrile (6-CTBD) and 6-MTBD occupy same pocket on TE domain of PksA with similar range of binding energy, however the experimental data show a different effect on the biosynthesis of AFB1. 6-MTBD effectively inhibited the AFB1 synthesis (97%) while 6-CTBD could not (39.5%). Data obtained from the expression study also supports the experimental observations. These compounds are non-toxic to mammalian cells. These benzimidazole derivatives inhibit toxic secondary metabolites without affecting the growth of the fungi hence can be used during fermentation to avoid mycotoxin contamination.
Collapse
Affiliation(s)
- P Dhanamjayulu
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | | | - Ranjan Das
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Lin L, Zhang T, Xu J. Genetic and Environmental Factors Influencing the Production of Select Fungal Colorants: Challenges and Opportunities in Industrial Applications. J Fungi (Basel) 2023; 9:585. [PMID: 37233296 PMCID: PMC10219082 DOI: 10.3390/jof9050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Natural colorants, mostly of plant and fungal origins, offer advantages over chemically synthetic colorants in terms of alleviating environmental pollution and promoting human health. The market value of natural colorants has been increasing significantly across the globe. Due to the ease of artificially culturing most fungi in the laboratory and in industrial settings, fungi have emerged as the organisms of choice for producing many natural colorants. Indeed, there is a wide variety of colorful fungi and a diversity in the structure and bioactivity of fungal colorants. Such broad diversities have spurred significant research efforts in fungi to search for natural alternatives to synthetic colorants. Here, we review recent research on the genetic and environmental factors influencing the production of three major types of natural fungal colorants: carotenoids, melanins, and polyketide-derived colorants. We highlight how molecular genetic studies and environmental condition manipulations are helping to overcome some of the challenges associated with value-added and large-scale productions of these colorants. We finish by discussing potential future trends, including synthetic biology approaches, in the commercial production of fungal colorants.
Collapse
Affiliation(s)
- Lan Lin
- Key Laboratory of Developmental Genes and Human Diseases (MOE), School of Life Science and Technology, Southeast University, Nanjing 210096, China;
| | - Tong Zhang
- Department of Bioengineering, Medical School, Southeast University, Nanjing 210009, China;
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|