1
|
Faisal S, Almutairi AW, Saif I, Ting L, Wang Q, Mustafa A, Ebaid R. Seaweed valorization as anaerobic co-substrate with fat, oil, and grease: Biomethane potential and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 421:132155. [PMID: 39921007 DOI: 10.1016/j.biortech.2025.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The present study explored the anaerobic co-digestion (AcD) of seaweed Gracilaria vermiculophylla with fat, oil, and grease (FOG) at 75, 50, and 25 % w/w of volatile solids (VS). Mono-digestion of FOG and SW led to a methane production of 133 and 109 mL/(g.d) with 40 days lag-phase, lower than 235 mL/(g.d) of AcD at FOG-50:SW-50 with reduced lag-phase of 20 days. The palmitic and oleic acid reduction was 95 % in the reactors FOG-50:SW-50, followed by FOG-25:SW-75, which was 84 %, as compared to FOG mono-digestion (47 %). Relative abundance of Firmicutes, Chloroflexi, and Bacteroidetes were enriched during AcD. The relative abundance of Methanosaeta was enhanced (40-90 %) in FOG-50:SW-50 compared with FOG-100:SW-0 as the reduction in Methanosaeta was replaced by Methanoculleus (30 %) and RuMen-M2 (10 %). The present study offers essential perspectives for the AcD of FOG with SW, showcasing the benefits of SW as a co-substrate for improved methane recovery from FOG.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China.
| | - Adel W Almutairi
- Biological Sciences Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Irfan Saif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000 Gansu Province, PR China
| | - Li Ting
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ebaid
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg 22609 Hamburg, Germany; Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| |
Collapse
|
2
|
Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, Luo X, Huang Y. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171557. [PMID: 38460704 DOI: 10.1016/j.scitotenv.2024.171557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ming Liang
- Bureau of Ecology and Environment, Maoming 525000, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510700, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Kai Li
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Zitao Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yuying Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| |
Collapse
|
3
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Li C, Lü F, Peng W, He P, Zhang H. Efficacy of bioaugmentation with nondomesticated mixed microbial consortia under ammonia inhibition in anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 391:129954. [PMID: 37914055 DOI: 10.1016/j.biortech.2023.129954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Bioaugmentation shows promise in mitigating ammonia-induced microbial inhibition in anaerobic digestion processes. However, the advanced technical requirements and high costs associated with pure strain cultivation, as well as the time-consuming and labor-intensive process of domesticating consortia, present challenges for industrial applications. Herein, the efficacy of bioaugmentation with nondomesticated mixed microbial consortia was evaluated, which resulted in a significant methane production improvement of 5.6%-11.7% and 10.3%-13.5% under total ammonia nitrogen concentrations of 2.0 and 4.9 g-N/L, respectively. Microbial analysis revealed that at high ammonium levels, the bioaugmented culture facilitated a transition in the methanogenic pathway from acetoclastic to hydrogenotrophic by regulating symbiotic relationships between propionate- and acetate-oxidizing bacteria and methanogens. Consortium type and dose applied were identified as crucial factors determining bioaugmentation effectiveness. Overall, nondomesticated mixed microbial consortia demonstrate potential as cost-effective bioaugmentation agents for mitigating ammonia-induced inhibition.
Collapse
Affiliation(s)
- Chao Li
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Peng
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|