1
|
Rahim NA, Luthfi AAI, Bukhari NA, Tan JP, Abdul PM, Manaf SFA. Biotechnological enhancement of lactic acid conversion from pretreated palm kernel cake hydrolysate by Actinobacillus succinogenes 130Z. Sci Rep 2023; 13:5787. [PMID: 37031272 PMCID: PMC10082786 DOI: 10.1038/s41598-023-32964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
The aim of this study was to establish an improved pretreatment and fermentation method i.e. immobilized cells for high recovery of fermentable sugars from palm kernel cake (PKC) and its effects on fermentability performance by Actinobacillus succinogenes 130Z in the conversion of the fermentable sugar to lactic acid. The effects of oxalic acid concentrations (1-6% w/v) and residence times (1-5 h) on the sugar recovery were initially investigated and it was found that the highest mannose concentration was 25.1 g/L at the optimum hydrolysis conditions of 4 h and 3% (w/v) oxalic acid. The subsequent enzymatic saccharification of the pretreated PKC afforded the highest enzymatic digestibility with the recovered sugars amounting to 25.18 g/L and 9.14 g/L of mannose and glucose, respectively. Subsequently, the fermentability performance of PKC hydrolysate was evaluated and compared in terms of cultivation phases (i.e. mono and dual-phases), carbonate loadings (i.e. magnesium and sodium carbonates), and types of sugars (i.e. glucose and mannose). The highest titer of 19.4 g/L lactic acid was obtained from the fermentation involving A. succinogenes 130Z in dual-phase cultivation supplemented with 30 g/L of magnesium carbonate. Lactic acid production was further enhanced by using immobilized cells with coconut shell-activated carbon (CSAC) of different sizes (A, B, C, and D) in the repeated batch cultivation of dual-phase fermentation producing 31.64 g/L of lactic acid. This work sheds light on the possibilities to enhance the utilization of PKC for lactic acid production via immobilized A. succinogenes 130Z.
Collapse
Affiliation(s)
- Nuraishah Abd Rahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Nurul Adela Bukhari
- Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Lin BJ, Chen WH, Lin YY, Chang JS, Farooq A, Singh Y, Ong HC, Show PL. An evaluation of thermal characteristics of bacterium Actinobacillus succinogenes for energy use and circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 301:122774. [PMID: 31954973 DOI: 10.1016/j.biortech.2020.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The thermal characteristics of Actinobacillus succinogenes (AS) from pyrolysis, torrefaction, and combustion are analyzed to evaluate the potential of this biomass as a renewable fuel. AS pyrolysis can be classified into four stages, and its main decomposition zone is at 200-500 °C. The solid yield of AS after 60 min torrefaction is over 60 wt%, and the torrefaction severity index map indicates that a high torrefaction temperature with a short duration has a more profound influence on its decomposition. The Py-GC/MS analysis of AS suggests that the volatile products from 500 °C pyrolysis are similar to microalgae-derived pyrolysis bio-oils. The combustibility index (S) of AS is 4.07 × 10-7 which is much higher than that of lignite coal (0.39 × 10-7) and bituminous coal (0.18 × 10-7), and close to those of biochar and bio-oil. The obtained results are conducive to the development of microorganisms as fuel to achieve a circular bioeconomy.
Collapse
Affiliation(s)
- Bo-Jhih Lin
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yu-Ying Lin
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Abid Farooq
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yashvir Singh
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, Graphic Era University, Dehradun, Uttarakhand, India
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, Jahim JM. Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells. Bioprocess Biosyst Eng 2020; 43:1153-1169. [PMID: 32095989 DOI: 10.1007/s00449-020-02311-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (< 11 mg/g clay pebbles). The repeated batch-fermentation trials with immobilized cells highlighted that succinic acid with an average concentration of up to 36.3 g/L with a metabolite-production ratio of 3:1 (succinic acid to by-products) could be attained within 130 h. Subsequently, the purification of succinic acid through crystallization was assessed in terms of pH, temperature, crystallization time, initial succinic acid concentration and multiple recrystallization processes. Increasing the crystallization time from 6 h to 9 h afforded an improvement of 17% in the recovery of succinic acid crystals. Moreover, a fourfold concentration coefficient of the broth yielded the highest purity percentage (99.9%). The crystallization in three consecutive stages at 9 h (with a fourfold concentration coefficient) successfully improved the total recovery percentage of succinic acid from 55.0 to 84.8%.
Collapse
Affiliation(s)
- Abdullah Amru Indera Luthfi
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jian Ping Tan
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nur Fatin Ajeera Mohd Isa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nurul Adela Bukhari
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.,Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Syazwani Mohd Shah
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Safa Senan Mahmod
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jamaliah Md Jahim
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia. .,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|