1
|
Seth D, Athparia M, Singh A, Rathore D, Venkatramanan V, Channashettar V, Prasad S, Maddirala S, Sevda S, Kataki R. Sustainable environmental practices of tea waste-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7449-7467. [PMID: 37991614 DOI: 10.1007/s11356-023-30848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Tea, the major beverage worldwide, is one of the oldest commercial commodities traded from ancient times. Apart from many of its advantages, including health, socio-economic, climatic, and agro-ecological values, FAO has recognized that the tea value chain covering its growth in the field, processing and marketing, and finally, the hot cup at the user's hand needs to be made sustainable during all these stages. Tea generates a lot of waste in different forms in different stages of its growth and processing, and these wastes, if not managed properly, may cause environmental pollution. A planned utilization of these wastes as feedstocks for various processes can generate more income, create rural livelihood opportunities, help grow tea environmentally sustainable, avoid GHG emissions, and make a real contribution to SDGs. Thermochemical and biological conversion of tea wastes generates value-added products. This review provides an overview on the impacts of the tea wastes on the environment, tea waste valorization processes, and applications of value-added products. The application of value-added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colourant, and phytochemicals has been reviewed. Further, the challenges in sustainable utilization of tea wastes and opportunities for commercial exploitation of value-added products from tea wastes have been reviewed.
Collapse
Affiliation(s)
- Dibyakanta Seth
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mondita Athparia
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi, 110016, India
| | - Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Veluswamy Venkatramanan
- Department of Environmental Studies, Indira Gandhi National Open University, New Delhi, 110068, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi, 110003, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shivani Maddirala
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Rupam Kataki
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
2
|
Duarah P, Haldar D, Singhania RR, Dong CD, Patel AK, Purkait MK. Sustainable management of tea wastes: resource recovery and conversion techniques. Crit Rev Biotechnol 2024; 44:255-274. [PMID: 36658718 DOI: 10.1080/07388551.2022.2157701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
3
|
Müller C, Scapini T, Rempel A, Abaide ER, Camargo AF, Nazari MT, Tadioto V, Bonatto C, Tres MV, Zabot GL, Colla LM, Treichel H, Alves SL. Challenges and opportunities for third-generation ethanol production: A critical review. ENGINEERING MICROBIOLOGY 2023; 3:100056. [PMID: 39628516 PMCID: PMC11610999 DOI: 10.1016/j.engmic.2022.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/06/2024]
Abstract
In recent decades, third-generation (3G) biofuels have become a more attractive method of fuel production, as algae cultivation does not infringe on resources needed for food production. Additionally, algae can adapt to different environments, has high photosynthetic efficiency (CO2 fixation), and has a high potential for carbohydrate accumulation. The prevalence of algae worldwide demonstrates its ability to adapt to different environments and climates, proving its biodiversity and versatility. Algae can be grown in wastewater, seawater, and even sewage, thus ensuring a lower water footprint and greater energy efficiency during algal biomass production. Because of this, the optimization of 3G ethanol production appears to be an excellent alternative to mitigate environmental impacts and increase energy and food security. This critical review presents (i) the stages of cultivation and processing of micro and macroalgae; (ii) the selection of yeasts (through engineering and/or bioprospecting) to produce ethanol from these biomasses; (iii) the potential of seawater-based facilities to reduce water footprint; and (iv) the mass and energy balances of 3G ethanol production in the world energy matrix. This article is, above all, a brainstorm on the environmental viability of algae bioethanol.
Collapse
Affiliation(s)
- Caroline Müller
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Alan Rempel
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Ederson Rossi Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Sérgio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| |
Collapse
|
4
|
Negi T, Kumar Y, Sirohi R, Singh S, Tarafdar A, Pareek S, Kumar Awasthi M, Alok Sagar N. Advances in bioconversion of spent tea leaves to value-added products. BIORESOURCE TECHNOLOGY 2022; 346:126409. [PMID: 34838972 DOI: 10.1016/j.biortech.2021.126409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, 148 106, Punjab, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India; Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
5
|
Scapini T, Dalastra C, Camargo AF, Kubeneck S, Modkovski TA, Júnior SLA, Treichel H. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126325. [PMID: 34785329 DOI: 10.1016/j.biortech.2021.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biorefineries are an essential step towards implementing a circular economy in the long term. They are based on renewable raw materials and must be designed holistically, recovering building blocks from being converted into several products. Lignocellulosic biomass is considered a critical pillar for a biologically based economy and a high value-added feedstock. The separation of the structural complexity that makes up the biomass allows the development of different product flows. Chemical, physical, and biological processes are evaluated for fractionation, hydrolysis, and fermentation processes in biorefineries; however, the volume of freshwater used affects water safety and increases the economic costs. Non-potable-resources-based technologies for biomass bioconversion are essential for biorefineries to become environmentally and economically sustainable systems. Studies are being carried out to substitute freshwater with seawater to reduce the water footprint. Accordingly, this review addresses a comprehensive discussion about seawater-based biorefineries focusing on lignocellulosic biomass conversion in biofuel and value-added products.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Sérgio Luiz Alves Júnior
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Elbasiouny H, Darwesh M, Elbeltagy H, Abo-alhamd FG, Amer AA, Elsegaiy MA, Khattab IA, Elsharawy EA, Ebehiry F, El-Ramady H, Brevik EC. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:449. [PMID: 34173877 PMCID: PMC8233605 DOI: 10.1007/s10661-021-09236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 05/17/2023]
Abstract
Treatment of water contaminated with heavy metals is challenging. Heavy metals are non-degradable, persistent in the environment, have a high dispersion capacity by water, can bioaccumulate, and represent risks to human and environmental health. Conventional treatment methods have disadvantages; however, adsorption in biomass is a highly promising method with high efficiency and low cost that avoids many of the disadvantages of conventional methods. Black tea (BT) wastes and water hyacinth (WH) have attracted attention for their ability to remove heavy metals from wastewater. Utilizing these approaches can remove contaminants and effectively manage problematic invasive species and wastes. The conventional uses of BT and WH were efficient for removing heavy metals from wastewater. Due to the unique and distinct properties and advantages of biochar and nano-forms of biosorbents, the use of BT and WH in these forms is promising to achieve sustainable heavy metals removal from wastewater. However, more study is needed to confirm preliminary results.
Collapse
Affiliation(s)
- Heba Elbasiouny
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Marwa Darwesh
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Hala Elbeltagy
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Fatma G. Abo-alhamd
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Ahlam A. Amer
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Mariam A. Elsegaiy
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Israa A. Khattab
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Esraa A. Elsharawy
- Department of Environmental and Biological Sciences, Al-Azhar University, Home Economics Faculty, Tanta, 31732 Egypt
| | - Fathy Ebehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Hassan El-Ramady
- Soil and Water Dept, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901 USA
| |
Collapse
|
7
|
Solieri L. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World J Microbiol Biotechnol 2021; 37:96. [PMID: 33969449 DOI: 10.1007/s11274-021-03066-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Non-conventional yeasts refer to a huge and still poorly explored group of species alternative to the well-known model organism Saccharomyces cerevisiae. Among them, Zygosaccharomyces rouxii and the sister species Zygosaccharomyces bailii are infamous for spoiling food and beverages even in presence of several food preservatives. On the other hand, their capability to cope with a wide range of process conditions makes these yeasts very attractive factories (the so-called "ZygoFactories") for bio-converting substrates poorly permissive for the growth of other species. In balsamic vinegar Z. rouxii is the main yeast responsible for converting highly concentrated sugars into ethanol, with a preference for fructose over glucose (a trait called fructophily). Z. rouxii has also attracted much attention for the ability to release important flavor compounds, such as fusel alcohols and the derivatives of 4-hydroxyfuranone, which markedly contribute to fragrant and smoky aroma in soy sauce. While Z. rouxii was successfully proposed in brewing for producing low ethanol beer, Z. bailii is promising for lactic acid and bioethanol production. Recently, several research efforts exploited omics tools to pinpoint the genetic bases of distinctive traits in "ZygoFactories", like fructophily, tolerance to high concentrations of sugars, lactic acid and salt. Here, I provided an overview of Zygosaccharomyces industrially relevant phenotypes and summarized the most recent findings in disclosing their genetic bases. I suggest that the increasing number of genomes available for Z. rouxii and other Zygosaccharomyces relatives, combined with recently developed genetic engineering toolkits, will boost the applications of these yeasts in biotechnology and applied microbiology.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
8
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
9
|
Bonatto C, Scapini T, Zanivan J, Dalastra C, Bazoti SF, Alves S, Fongaro G, de Oliveira D, Treichel H. Utilization of seawater and wastewater from shrimp production in the fermentation of papaya residues to ethanol. BIORESOURCE TECHNOLOGY 2021; 321:124501. [PMID: 33310410 DOI: 10.1016/j.biortech.2020.124501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Seawater (SW) and wastewater from shrimp production (WSP) were used as a solvent for the fermentation of papaya residues (Carica papaya) by Wickerhamomyces sp. UFFS-CE-3.1.2 and Saccharomyces cerevisiae CAT-1. For comparative purposes and evaluation of the effect of salinity, ultrapure water (UW) was used as control. Fermentative parameters were evaluated in Plackett-Burman planning to assess ethanol production's significant variables. Urea supplementation was the only variable not significant for the proposed process, suggesting that papaya residues contain all the nutrients needed for fermentation. The experiments conducted with the different water sources resulted in similar concentrations of ethanol. Maximum ethanol concentration was obtained after nine h of fermentation usingWickerhamomycessp. UFFS-CE-3.1.2 (27.31 ± 1.40 g L-1) and 12 h using S. cerevisiaeCAT-1 (24.53 ± 0.68 g L-1). This study demonstrated that SW and WSP could replace freshwater without affecting ethanol production. Papaya residues from the fruit and vegetable sectors can be considered a promising substrate source for ethanol production.
Collapse
Affiliation(s)
- Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Jessica Zanivan
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Suzana F Bazoti
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Sérgio Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, Brazil
| | - Gislaine Fongaro
- Departament of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
10
|
Adsorption of Dye by Waste Black Tea Powder: Parameters, Kinetic, Equilibrium, and Thermodynamic Studies. J CHEM-NY 2020. [DOI: 10.1155/2020/5431046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Waste black tea powder was used as a potential adsorbent to remove methylene blue (MB) from aqueous solution. Several operating factors in adsorption of MB onto waste black tea powder were investigated, including contact time, initial MB concentration, solution pH, adsorption temperature, and dosage of waste black tea powder. Experimental results revealed that the adsorption efficiency increased with contact time and solution pH values and decreased with initial MB concentration and adsorption temperature. The equilibrium time was estimated to be around 60 min. The maximum adsorption capacity and the highest adsorption efficiency were 302.63 mg·g−1 and 100%, respectively. In kinetic study, pseudo-first-order and pseudo-second-order kinetic models, intraparticle diffusion model, and Boyd and Elovich models were employed to analyze the adsorption behavior and the adsorption mechanism. It was found that the pseudo-second-order kinetic model was suitable to describe the adsorption process, and the calculated equilibrium adsorption capacity was well close to the experimental data for different initial MB concentrations. The internal diffusion was not the only rate-controlling step, and the existence of boundary effect was observed in this study. From isotherm analysis, the equilibrium data were well represented by the Langmuir model, rather than Freundlich, Dubinin–Redushckevich, or Temkin models. The nonlinear fitting for various isotherm models implied that the adsorption behavior between MB and waste black tea powder was complication. Thermodynamic parameters including changes in Gibb’s free energy, enthalpy, and entropy suggested that adsorption of MB onto waste black tea powder was a spontaneous and exothermic process. The multiple regeneration/adsorption experiments indicated that the used black tea powder efficiently remained more than 75% after five cycles using NaOH as a regenerative reagent and thus be used for many times. Therefore, as a low-cost and easily available material, waste black tea powder could be applied in wastewater treatment.
Collapse
|
11
|
|