1
|
Zhang J, Wang X, Yue W, Bao J, Yao M, Ge L. Toxicological Analysis of Acetamiprid Degradation by the Dominant Strain Md2 and Its Effect on the Soil Microbial Community. TOXICS 2024; 12:572. [PMID: 39195674 PMCID: PMC11360584 DOI: 10.3390/toxics12080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Microbial degradation is acknowledged as a viable and eco-friendly approach for diminishing residues of neonicotinoid insecticides. This study reports the dominant strain of Md2 that degrades acetamiprid was screened from soil and identified as Aspergillus heterochromaticus, and the optimal degradation conditions were determined. Research indicated that the degradation of Md2 to 100 mg/L acetamiprid was 55.30%. Toxicological analyses of acetamiprid and its metabolites subsequently revealed that acetamiprid and its metabolites inhibited the germination of cabbage seed, inhibited the growth of Escherichia coli, and induced the production of micronuclei in the root tip cells of faba beans. Based on the analysis of metabolic pathways, it has been determined that the primary metabolic routes of acetamiprid include N-demethylation to form IM-2-1 and oxidative cleavage of the cyanoimino group to produce IM-1-3. Using 16S rRNA high-throughput sequencing, the results showed that acetamiprid and Md2 elevated the relative abundance of Acidithiobacillus, Ascomycetes, and Stramenobacteria, with increases of 10~12%, 6%, and 9%, respectively, while reducing the relative abundance of Acidobacteria, Chlorobacteria, Ascomycetes, and Sporobacteria, with decreases of 15%, 8%, 32%, and 6%, respectively. The findings will facilitate the safety evaluation of the toxicological properties of neonicotinoid insecticides, their biodegradable metabolites, and associated research on their degradation capabilities.
Collapse
Affiliation(s)
- Jiale Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (J.Z.); (W.Y.); (L.G.)
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (J.Z.); (W.Y.); (L.G.)
| | - Wanlei Yue
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (J.Z.); (W.Y.); (L.G.)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (J.Z.); (W.Y.); (L.G.)
| | - Mengqin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Ling Ge
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (J.Z.); (W.Y.); (L.G.)
| |
Collapse
|
2
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
3
|
Ge H, Liu X, Lu D, Yang Z, Li H. Degradation of pyrene by Xanthobacteraceae bacterium strain S3 isolated from the rhizosphere sediment of Vallisneria natans: active conditions, metabolite identification, and proposed pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25659-25670. [PMID: 38483714 DOI: 10.1007/s11356-024-32724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
4
|
Bhatawadekar VC, Damare SR, Garg A. Folin-Ciocalteu assay as a rapid colourimetric screening method for evaluating PAH degradation abilities of heterotrophic bacteria. 3 Biotech 2023; 13:144. [PMID: 37124990 PMCID: PMC10140204 DOI: 10.1007/s13205-023-03549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Bioremediation using microbes is an eco-friendly approach being explored for reclaiming PAH-contaminated areas. However, isolation and screening of potential bacteria to degrade PAHs are very laborious and cumbersome. To alleviate this issue, we describe a rapid method for screening the bacterial cultures for their ability to degrade PAHs using Folin-Ciocalteu (FC) assay. Six hundred bacterial isolates were tested for their ability to degrade PAH using FC assay. The cultures capable of degrading PAH show blue colouration, resulting from the reaction of FC reagent with phenolic intermediates generated during PAH degradation. Out of the 600 cultures screened, 64 showed an ability to degrade PAH. This study provides a very easy, rapid, less laborious, and sensitive method to screen a large number of bacterial cultures for their ability to degrade PAH. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03549-4.
Collapse
Affiliation(s)
- Vasudha C. Bhatawadekar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
- Department of Microbiology, Goa University, Taleigao Plateau, Goa India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Anita Garg
- Analytical Services Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| |
Collapse
|
5
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
6
|
Mendoza-Burguete Y, de la Luz Pérez-Rea M, Ledesma-García J, Campos-Guillén J, Ramos-López MA, Guzmán C, Rodríguez-Morales JA. Global Situation of Bioremediation of Leachate-Contaminated Soils by Treatment with Microorganisms: A Systematic Review. Microorganisms 2023; 11:microorganisms11040857. [PMID: 37110280 PMCID: PMC10145224 DOI: 10.3390/microorganisms11040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This systematic review presents the current state of research in the last five years on contaminants in soils, especially in leachates from solid waste landfills, with emphasis on biological remediation. In this work, the pollutants that can be treated by microorganisms and the results obtained worldwide were studied. All the data obtained were compiled, integrated, and analyzed by soil type, pollutant type, bacterial type, and the countries where these studies were carried out. This review provides reliable data on the contamination of soils worldwide, especially soils contaminated by leachate from municipal landfills. The extent of contamination, treatment objectives, site characteristics, cost, type of microorganisms to be used, and time must be considered when selecting a viable remediation strategy. The results of this study can help develop innovative and applicable methods for evaluating the overall contamination of soil with different contaminants and soil types. These findings can help develop innovative, applicable, and economically feasible methods for the sustainable management of contaminated soils, whether from landfill leachate or other soil types, to reduce or eliminate risk to the environment and human health, and to achieve greater greenery and functionality on the planet.
Collapse
|
7
|
Zhu H, Hu L, Qu B, Liao Q, Tian C, Song X, Fang X, Zhang X. Optimization of key parameters for continuous and precise nitrogen injection in goaf based on response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40189-40205. [PMID: 36607573 DOI: 10.1007/s11356-022-25037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
In order to solve the problems of coal spontaneous combustion, poor inerting effect of traditional nitrogen injection, and waste of resources in goaf, based on the response surface methodology and Box-Behnken combination test principle, the self-developed continuous and precise nitrogen injection and fire-fighting equipment was used to study the best possible combination of nitrogen injection position (20-90 m), nitrogen injection amount (10-70 m3/min), and air supply volume (2100-2500 m3/min), aiming to minimize the width of the oxidation zone and CO concentration in goaf. The optimal key parameters of continuous precise nitrogen injection were determined as follows: nitrogen injection position 54.17 m, nitrogen injection amount 31.04 m3/min, and air supply 2484.81 m3/min. Under this condition, the width of the oxidation zone was 29.21 ± 0.3 m and the CO concentration was 28.1 ± 4.4 ppm, which were similar to the predicted results of the model (the width of the oxidation zone was 29.41 m; CO concentration was 27.28 ppm). The reliability of the model was verified. These preliminary studies have achieved the purpose of rapid control of the fire in the whole region of the goaf and provided valuable lessons for similar nitrogen injection fire prevention and extinguishing technologies in goaf.
Collapse
Affiliation(s)
- Hongqing Zhu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Lintao Hu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Baolin Qu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qi Liao
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chang Tian
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiaozhen Song
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiyang Fang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xuedong Zhang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
8
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
9
|
A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. FERMENTATION 2022. [DOI: 10.3390/fermentation8060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons are compounds with 2 or more benzene rings, and 16 of them have been classified as priority pollutants. Among them, pyrene has been found in higher concentrations than recommended, posing a threat to the ecosystem. Many bacterial strains have been identified as pyrene degraders. Most of them belong to Gram-positive strains such as Mycobacterium sp. and Rhodococcus sp. These strains were enriched and isolated from several sites contaminated with petroleum products, such as fuel stations. The bioremediation of pyrene via Mycobacterium strains is the main objective of this review. The scattered data on the degradation efficiency, formation of pyrene metabolites, bio-toxicity of pyrene and its metabolites, and proposed degradation pathways were collected in this work. The study revealed that most of the Mycobacterium strains were capable of degrading pyrene efficiently. The main metabolites of pyrene were 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylate, phthalic acid, and pyrene-4,5-dihydrodiol. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-dihydroxyphenanthrene, monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests. This study may contribute to enhancing the bioremediation of pyrene in a different matrix.
Collapse
|
10
|
Li J, Chen W, Zhou W, Wang Y, Deng M, Zhou S. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1487-1498. [PMID: 32844301 DOI: 10.1007/s10646-020-02268-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Two pyrene-degrading strains, Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 were co-incubated in equal proportions as a microbiological consortium and could enhance the degradation of pyrene. The enzymatic activities of the catechol 1,2-dioxygenase (C12O) and 2,3-dioxygenase activities (C23O) were produced complementary expression by P. aeruginosa PA06 and Achromobacter sp. AC15, respectively. Meanwhile, results showed that pyrene degradation was sufficiently promoted in the presence of sodium citrate as a co-metabolic carbon source, likely a result of enhanced biomass and biosurfactant production. The optimized dosage and ideal initial pHs were 1.4 g L-1 and 5.5, respectively. We also analyzed the rate constant of pyrene degradation, cell growth, and enzyme activity. Results show that P. aeruginosa PA06 had a better effect than Achromobacter sp. AC15 in bacterial growth. However, the C23O or C12O activity produced by Achromobacter sp. AC15 continued at a similar or even faster than that of P. aeruginosa PA06. The mixed bacteria had a better effect than any single bacteria, suggesting the strains worked synergistically to enhance the degradation efficiency. In the co-metabolism system of 600 mg/L pyrene and 1.4 g/L sodium citrate, pyrene degradation reached 74.6%, was 1.57 times, 2.06 times, and 3.89 times that of the mix-culture strains, single PA06 and single AC15 without sodium citrate, respectively. Overall, these findings are valuable as a potential tool for the bioremediation of high-molecular-weight PAHs.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Weixin Chen
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Wei Zhou
- Guizhou Academy of Sciences, 1 Shanxi Road, Guiyang, 550001, People's Republic of China
| | - Yao Wang
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Maocheng Deng
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China.
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guizhou Academy of Sciences, 1 Shanxi Road, Guiyang, 550001, People's Republic of China.
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
11
|
Bhatt P, Rene ER, Kumar AJ, Gangola S, Kumar G, Sharma A, Zhang W, Chen S. Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. CHEMOSPHERE 2021; 276:130156. [PMID: 34088081 DOI: 10.1016/j.chemosphere.2021.130156] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the potential role of Bacillus sp. FA4 for the bioremediation of fipronil in a contaminated environment and resource recovery from natural sites. The degradation parameters for fipronil were optimized using response surface methodology (RSM): pH - 7.0, temperature - 32 °C, inocula - 6.0 × 108 CFU mL-1, and fipronil concentration - 50 mg L-1. Degradation of fipronil was confirmed in the mineral salt medium (MSM), soil, immobilized agar discs, and sodium alginate beads. The significant reduction of the half-life of fipronil suggested that the strain FA4 could be used for the treatment of large-scale fipronil degradation from contaminated environments. The kinetic parameters, such as qmax, Ks, and Ki for fipronil degradation with strain FA4, were 0.698 day-1, 12.08 mg L-1, and 479.35 mg L-1, respectively. Immobilized FA4 cells with sodium alginate and agar disc beads showed enhanced degradation with reductions in half-life at 7.83 and 7.34 days, respectively. The biodegradation in soil further confirmed the degradation potential of strain FA4 with a half-life of 7.40 days as compared to the sterilized soil control's 169.02 days. The application of the strain FA4 on fipronil degradation, under different in vitro conditions, showed that the strain could be used for bioremediation and resource recovery of contaminated wastewater and soil in natural contaminated sites.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China; Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | - Saurabh Gangola
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India; Department of School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Govind Kumar
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India; Indian Council of Agriculture Research-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, 226101, India
| | - Anita Sharma
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Khanpour-Alikelayeh E, Partovinia A, Talebi A, Kermanian H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:328. [PMID: 33956244 DOI: 10.1007/s10661-021-09104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5-15% v/v), initial oil concentration (1500-3500 ppm), and NaCl concentration (0-30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box-Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables' effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.
Collapse
Affiliation(s)
- Elham Khanpour-Alikelayeh
- Department of Environment, College of Environment, Karaj, Iran
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Ali Partovinia
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| | - Ahmad Talebi
- Department of Environment, College of Environment, Karaj, Iran
| | - Hossein Kermanian
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Ren H, Sun W, Wang Z, Fu S, Zheng Y, Song B, Li Z, Peng Z. Enhancing the Enzymatic Saccharification of Grain Stillage by Combining Microwave-Assisted Hydrothermal Irradiation and Fungal Pretreatment. ACS OMEGA 2020; 5:12603-12614. [PMID: 32548444 PMCID: PMC7288354 DOI: 10.1021/acsomega.9b03681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/14/2020] [Indexed: 06/01/2023]
Abstract
Grain stillage from the liquor industry was pretreated by using microwave-assisted hydrothermal pretreatment, fungal pretreatments, and their combination to enable efficient enzymatic hydrolysis for sugar production. The microwave-assisted hydrothermal (MH) pretreatment was optimized by using a response surface methodology, and the respective maximum reducing sugar yield and saccharification efficiency of 17.59 g/100 g and 33.85%, respectively, were achieved under the pretreatment conditions of microwave power = 120 W, solid-to-liquid ratio = 1:15 (g·mL-1), and time = 3.5 min. The fungal pretreatment with Phanerochaete chrysosporium digestion (PC) achieved the maximum ligninolytic enzyme activities in 6 days with 10% inoculum size at which the reducing sugar yield and saccharification efficiency reached 19.74 g/100 g and 36.29%, respectively. To further improve the pretreatment efficiency, MH and PC pretreatments were combined, but the sequence of MH and PC mattered on the saccharification efficiency. The MH + PC pretreatment (the MH prior to the PC) was better than PC + MH (the PC prior to the MH) in terms of saccharification efficiency. Overall, the MH + PC pretreatment achieved superior reducing sugar yield and saccharification efficiency (25.51 g/100 g and 66.28%, respectively) over all other studied pretreatment methods. The variations of chemical compositions and structure features of the raw and pretreated grain stillage were characterized by using scanning electron microscopy and Fourier transform infrared spectroscopy. The results reveal that both MH and PC pretreatments mainly functioned on delignification and decreasing cellulose crystallinity, thus enhancing the enzymatic saccharification of the pretreated grain stillage. The combined MH and PC pretreatment could be a promising method to enable cost-efficient grain stillage utilization for downstream applications such as biofuels.
Collapse
Affiliation(s)
- Haiwei Ren
- School
of Life Science and Engineering, Lanzhou
University of Technology/ Key Laboratory of Complementary Energy System
of Biomass and Solar Energy, Lanzhou, Gansu Province 730050, P.R. China
| | - Wenli Sun
- School
of Life Science and Engineering, Lanzhou
University of Technology/ Key Laboratory of Complementary Energy System
of Biomass and Solar Energy, Lanzhou, Gansu Province 730050, P.R. China
| | - Zhiye Wang
- Institute
of Biology, Gansu Academy of Sciences, Lanzhou, Gansu Province 73000, P.R. China
| | - Shanfei Fu
- School
of Environment and Civil Engineering, Jiangnan
University, Wuxi, Jiangsu Province 214122, P.R. China
| | - Yi Zheng
- Department
of Grain Science and Industry, Kansas State
University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, Kansas 66506, United States
| | - Bing Song
- Scion, 49 Sala Street,
Private Bag 3020, Rotorua 3046, New Zealand
| | - Zhizhong Li
- School
of Life Science and Engineering, Lanzhou
University of Technology/ Key Laboratory of Complementary Energy System
of Biomass and Solar Energy, Lanzhou, Gansu Province 730050, P.R. China
| | - Zhangpu Peng
- Institute
of Biology, Gansu Academy of Sciences, Lanzhou, Gansu Province 73000, P.R. China
| |
Collapse
|
14
|
Gupta B, Puri S, Thakur IS, Kaur J. Comparative evaluation of growth kinetics for pyrene degradation by Acinetobacter pittii NFL and Enterobacter cloacae BT in the presence of biosurfactant. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|