1
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Tsai HJ, Chang YF, Hsieh YJ, Wang JD, Wu CC, Ho MY, Cheng JC, Chen DP, Liao HR, Tseng CP. Human Disabled-2 regulates thromboxane A 2 signaling for efficient hemostasis in thrombocytopenia. Nat Commun 2024; 15:9816. [PMID: 39537612 PMCID: PMC11561248 DOI: 10.1038/s41467-024-54093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Fang Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Meng-Ying Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, North District, Taichung, 404, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Hsiang-Rui Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
3
|
Tsai HJ, Cheng KW, Li JC, Ruan TX, Chang TH, Wang JR, Tseng CP. Identification of Podoplanin Aptamers by SELEX for Protein Detection and Inhibition of Platelet Aggregation Stimulated by C-Type Lectin-like Receptor 2. BIOSENSORS 2024; 14:464. [PMID: 39451677 PMCID: PMC11506057 DOI: 10.3390/bios14100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate TCIPA. Selective blockage of PDPN-mediated platelet-tumor cell interaction is a plausible strategy for inhibiting metastases. In this study, we aimed to screen for aptamers, which are the single-stranded DNA oligonucleotides that form a specific three-dimensional structure, bind to specific molecular targets with high affinity and specificity, bind to PDPN, and interfere with PDPN/CLEC-2 interactions. The systematic evolution of ligands by exponential enrichment (SELEX) was employed to enrich aptamers that recognize PDPN. The initial characterization of ssDNA pools enriched by SELEX revealed a PDPN aptamer designated as A1 displaying parallel-type G-quadruplexes and long stem-and-loop structures and binding PDPN with a material with a dissociation constant (Kd) of 1.3 ± 1.2 nM. The A1 aptamer recognized both the native and denatured form of PDPN. Notably, the A1 aptamer was able to quantitatively detect PDPN proteins in Western blot analysis. The A1 aptamer could interfere with the interaction between PDPN and CLEC-2 and inhibit PDPN-induced platelet aggregation in a concentration-dependent manner. These findings indicated that the A1 aptamer is a candidate for the development of biosensors in detecting the levels of PDPN expression. The action by A1 aptamer could result in the prevention of tumor cell metastases, and if so, could become an effective pharmacological agent in treating cancer patients.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Wen Cheng
- Department of Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jou-Chen Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsai-Xiang Ruan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Hsin Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jin-Ru Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33302, Taiwan
| |
Collapse
|
4
|
Huang CH, Pai PC, Lei KF. Investigation of Stem Cell-Like Characteristics and Immune Cell Interaction of Tumor Cells Survived from Continuous Shear Flow Environment. Adv Biol (Weinh) 2024; 8:e2300332. [PMID: 37752715 DOI: 10.1002/adbi.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Indexed: 09/28/2023]
Abstract
When tumor cells are released from a primary tumor into the bloodstream or lymphatic circulation system, they are exposed to a continuous shear flow environment. This environment exerts physical stresses on the tumor cells, which can activate apoptotic pathways. However, certain tumor cells have the ability to adapt to these mechanical stresses, enhancing their likelihood of survival and promoting metastasis. In this study, these tumor cells survived from shear flow environment are examined and revealed to closely link to stem cell-like characteristics. Higher gene expression levels of self-renewal and differentiation markers and enhanced abilities of migration, spheroid formation, and colony formation are shown. Moreover, the interaction between immune cells and the surviving cells is investigated. The results show that the surviving cells possess immune escape capabilities, implying their ability to evade immune surveillance. Additionally, these surviving cells display characteristics reminiscent of stem cells. This study holds great importance in advancing the understanding of tumor biology. By comprehending the behavior and properties of these surviving cells, new therapeutic strategies can be developed to specifically target circulating tumor cells (CTCs) and enhance cancer treatment outcomes.
Collapse
Affiliation(s)
- Chia-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
5
|
Shirai T, Tsukiji N, Sasaki T, Oishi S, Yokomori R, Takano K, Suzuki-Inoue K. Cancer-associated fibroblasts promote venous thrombosis through podoplanin/CLEC-2 interaction in podoplanin-negative lung cancer mouse model. J Thromb Haemost 2023; 21:3153-3165. [PMID: 37473844 DOI: 10.1016/j.jtha.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer-associated thrombosis (CAT) is the leading cause of morbidity and mortality. Cancer-associated fibroblasts (CAFs) are a prominent component of the tumor microenvironment that contributes to cancer progression through direct cell-cell interactions and the release of extracellular vesicles (EVs). However, the role of CAFs in CAT remains unclear. OBJECTIVE This study aims to investigate whether CAFs aggravate CAT and the underlying molecular mechanism using a preclinical mouse lung cancer model. METHODS We designed a Lewis lung carcinoma (LLC) tumor-bearing mouse model. CAFs were characterized using fluorescence immunohistostaining. The presence of podoplanin, a platelet-activating membrane protein through C-type lectin-like receptor 2 (CLEC-2), in EVs isolated from primary CAFs or LLC tumor tissues was assessed by immunoblotting. The platelet activation and aggregation abilities of the EVs were quantified using flow cytometry. Podoplanin plasma levels were measured by enzyme-linked immunosorbent assay. Venous thrombosis was induced in the femoral vein using 2.5% ferric chloride. The anti-CLEC-2 monoclonal antibody 2A2B10 was used to deplete CLEC-2 on the surface of the platelets. RESULTS CAFs expressing CD90, PDGFRβ, HSP47, CD34, and vimentin, co-expressed podoplanin and induced platelet activation and aggregation in a CLEC-2-dependent manner. Tumor-bearing mice showed elevated podoplanin plasma levels. CAF-EV injection and tumor-bearing mice showed shorter occlusion time in the venous thrombosis model. Although tumor growth was not altered, antibody-induced CLEC-2 depletion suppressed venous thrombosis in the tumor-bearing state but not in the healthy condition. CONCLUSION CAFs and CAF-derived EVs induce CLEC-2-dependent platelet aggregation and aggravate venous thrombosis.
Collapse
Affiliation(s)
- Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tomoyuki Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Saori Oishi
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Ryohei Yokomori
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Katsuhiro Takano
- Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan; Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan.
| |
Collapse
|
6
|
Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci 2023. [PMID: 37196179 DOI: 10.1002/vms3.1161] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.
Collapse
Affiliation(s)
- Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy (ECHA), University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
7
|
Huang Y, Lu M, Wang Y, Zhang C, Cao Y, Zhang X. Podoplanin: A potential therapeutic target for thrombotic diseases. Front Neurol 2023; 14:1118843. [PMID: 36970507 PMCID: PMC10033871 DOI: 10.3389/fneur.2023.1118843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
As a specific lymphatic marker and a key ligand of C-type lectin-like receptor 2 (CLEC-2), podoplanin (Pdpn) is involved in various physiological and pathological processes such as growth and development, respiration, blood coagulation, lymphangiogenesis, angiogenesis, and inflammation. Thrombotic diseases constitute a major cause of disability and mortality in adults, in which thrombosis and inflammation play a crucial role. Recently, increasing evidence demonstrates the distribution and function of this glycoprotein in thrombotic diseases such as atherosclerosis, ischemic stroke, venous thrombosis, ischemic-reperfusion injury (IRI) of kidney and liver, and myocardial infarction. Evidence showed that after ischemia, Pdpn can be acquired over time by a heterogeneous cell population, which may not express Pdpn in normal conditions. In this review, the research progresses in understanding the roles and mechanisms of podoplanin in thromobotic diseases are summarized. The challenges of podoplanin-targeted approaches for disease prognosis and preventions are also discussed.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manli Lu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunyuan Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongjun Cao
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Zhang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Huang TH, Hsieh PW, Chen TJ, Tsai HJ, Cheng JC, Liao HR, Kuo SL, Tseng CP. Melastoma malabathricum L. Suppresses Neutrophil Extracellular Trap Formation Induced by Synthetic Analog of Viral Double-Stranded RNA Associated with SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020341. [PMID: 36839613 PMCID: PMC9965883 DOI: 10.3390/pathogens12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Platelet hyper-reactivity and neutrophil extracellular trap (NET) formation contribute to the development of thromboembolic diseases for patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study investigated the pathophysiological effects of SARS-CoV-2 surface protein components and the viral double-stranded RNA (dsRNA) on platelet aggregation and NET formation. Traditional Chinese medicine (TCM) with anti-viral effects was also delineated. The treatment of human washed platelets with SARS-CoV-2 spike protein S1 or the ectodomain S1 + S2 regions neither caused platelet aggregation nor enhanced agonists-stimulated platelet aggregation. Moreover, NET formation can be induced by polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of viral dsRNA, but not by the pseudovirus composed of SARS-CoV-2 spike, envelope, and membrane proteins. To search for TCM with anti-NET activity, the plant Melastoma malabathricum L. which has anticoagulant activity was partially purified by fractionation. One of the fractions inhibited poly(I:C)-induced NET formation in a dose-dependent manner. This study implicates that SARS-CoV-2 structural proteins alone are not sufficient to promote NET and platelet activation. Instead, dsRNA formed during viral replication stimulates NET formation. This study also sheds new insight into using the active components of Melastoma malabathricum L. with anti-NET activity in the battle of thromboembolic diseases associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Tsu-Jung Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shun-Li Kuo
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5202)
| |
Collapse
|
9
|
Di Gennaro L, De Cristofaro R, Ferretti A, Basso M, Riccio C, Cordaro M, Lajolo C. Oral Squamous Cell Carcinoma-Associated Thrombosis: What Evidence? Cancers (Basel) 2022; 14:cancers14225616. [PMID: 36428709 PMCID: PMC9688079 DOI: 10.3390/cancers14225616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
Venous thromboembolism (VTE) disease is the second leading cause of mortality in cancer patients. In the general population, the annual incidence of a thromboembolic event is about 117 cases per 100,000 persons, but cancer increases this risk about fourfold, while in patients receiving chemotherapy and surgical treatment, it is about sevenfold. Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer and represents a multistep process in which environmental factors and genetic alterations are implicated. Thrombotic risk is considered empirically low in OSCC patients, although few data are available. Having limited information available may result in poor awareness of VTE prevention in OSCC, risking jeopardising the oncologic treatment and increasing the morbidity and mortality among these patients. In this paper, the topic of OSCC-associated thrombosis will be discussed.
Collapse
Affiliation(s)
- Leonardo Di Gennaro
- Hemorrhagic and Thrombotic Diseases Center, Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-30156329
| | - Raimondo De Cristofaro
- Hemorrhagic and Thrombotic Diseases Center, Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| | - Antonietta Ferretti
- Hemorrhagic and Thrombotic Diseases Center, Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| | - Maria Basso
- Hemorrhagic and Thrombotic Diseases Center, Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| | - Claudia Riccio
- Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| | - Massimo Cordaro
- Head and Neck Department, Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| | - Carlo Lajolo
- Head and Neck Department, Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| |
Collapse
|
10
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
11
|
Park SY, Lee SK, Lim M, Kim B, Hwang BO, Cho ES, Zhang X, Chun KS, Chung WY, Song NY. Direct Contact with Platelets Induces Podoplanin Expression and Invasion in Human Oral Squamous Cell Carcinoma Cells. Biomol Ther (Seoul) 2022; 30:284-290. [PMID: 35110423 PMCID: PMC9047494 DOI: 10.4062/biomolther.2021.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is mostly diagnosed at an advanced stage, with local and/or distal metastasis. Thus, locoregional and/or local control of the primary tumor is crucial for a better prognosis in patients with OSCC. Platelets have long been considered major players in cancer metastasis. Traditional antiplatelet agents, such as aspirin, are thought to be potential chemotherapeutics, but they need to be used with caution because of the increased bleeding risk. Podoplanin (PDPN)-expressing cancer cells can activate platelets and promote OSCC metastasis. However, the reciprocal effect of platelets on PDPN expression in OSCC has not been investigated. In this study, we found that direct contact with platelets upregulated PDPN and integrin β1 at the protein level and promoted invasiveness of human OSCC Ca9.22 cells that express low levels of PDPN. In another human OSCC HSC3 cell line that express PDPN at an abundant level, silencing of the PDPN gene reduced cell invasiveness. Analysis of the public database further supported the co-expression of PDPN and integrin β1 and their increased expression in metastatic tissues compared to normal and tumor tissues of the oral cavity. Taken together, these data suggest that PDPN is a potential target to regulate platelet-tumor interaction and metastasis for OSCC treatment, which can overcome the limitations of traditional antiplatelet drugs.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Bomi Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eunae Sandra Cho
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, Jilin Province 133000, China
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Hwang BO, Park SY, Cho ES, Zhang X, Lee SK, Ahn HJ, Chun KS, Chung WY, Song NY. Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Front Immunol 2022; 12:807600. [PMID: 34987523 PMCID: PMC8721674 DOI: 10.3389/fimmu.2021.807600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eunae Sandra Cho
- BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, China
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyung-Joon Ahn
- Department of Orofacial Pain and Oral Medicine, Dental Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
13
|
Sasano T, Gonzalez-Delgado R, Muñoz NM, Carlos-Alcade W, Soon Cho M, Sheth RA, Sood AK, Afshar-Kharghan V. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J Thromb Haemost 2022; 20:104-114. [PMID: 34608736 PMCID: PMC8712373 DOI: 10.1111/jth.15544] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Podoplanin (PDPN) is a sialylated membrane glycoprotein that binds to C-type lectin-like receptor 2 on platelets resulting in platelet activation. PDPN is expressed on lymphatic endothelial cells, perivascular fibroblasts/pericytes, cancer cells, cancer-associated fibroblasts, and tumor stromal cells. PDPN's expression on malignant epithelial cells plays a role in metastasis. Furthermore, the expression of PDPN in brain tumors (high-grade gliomas) was found to correlate with an increased risk of venous thrombosis. OBJECTIVE We examined the expression of PDPN and its role in tumor progression and venous thrombosis in ovarian cancer. METHODS We used mouse models of ovarian cancer and venous thrombosis. RESULTS Ovarian cancer cells express PDPN and release PDPN-rich extracellular vesicles (EVs), and cisplatin and topotecan (chemotherapies commonly used in ovarian cancer) increase the expression of podoplanin in cancer cells. The expression of PDPN in ovarian cancer cells promotes tumor growth in a murine model of ovarian cancer and that knockdown of PDPN gene expression results in smaller primary tumors. Both PDPN-expressing ovarian cancer cells and their EVs cause platelet aggregation. In a mouse model of venous thrombosis, PDPN-expressing EVs released from HeyA8 ovarian cancer cells produce more frequent thrombosis than PDPN-negative EVs derived from PDPN-knockdown HeyA8 cells. Blood clots induced by PDPN-positive EVs contain more platelets than those in blood clots induced by PDPN-negative EVs. CONCLUSIONS In summary, our findings demonstrate that the expression of PDPN by ovarian cancer cells promotes tumor growth and venous thrombosis in mice.
Collapse
Affiliation(s)
- Tomoyuki Sasano
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ricardo Gonzalez-Delgado
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nina M. Muñoz
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendolyn Carlos-Alcade
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Soon Cho
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vahid Afshar-Kharghan
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
miR-532-3p inhibits the progression of tongue squamous cell carcinoma by targeting podoplanin. Chin Med J (Engl) 2021; 134:2999-3008. [PMID: 34939978 PMCID: PMC8710329 DOI: 10.1097/cm9.0000000000001563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association between miR-532-3p and tongue squamous cell carcinoma (TSCC) has been examined in the literature to improve the survival rate of patients with this tumor. However, further studies are needed to confirm the regulatory roles of this microRNA (miRNA) in TSCC. The objective of this study was to investigate the roles played by and the underlying mechanism used by the miR-532-3p/podoplanin (PDPN) axis in TSCC development. METHODS Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) were performed to evaluate the PDPN expression level in TSCC tissues and cells. The proliferative, adhesive, and migratory capabilities of TSCC cells (CAL-27 and CTSC-3) were examined using cell counting kit-8 (CCK-8), cell adhesion, and wound-healing assays, respectively. The dual-luciferase reporter (DLR) assay was later conducted to confirm the relationship between miR-532-3p and PDPN. RESULTS The results indicated that PDPN expression was enriched in TSCC tissues and cells, and that the expression of PDPN was associated with some clinicopathological parameters of TSCC, including lymph node metastasis (P = 0.001), tumor-node-metastasis (TNM) staging (P = 0.010), and grading (P = 0.010). Further analysis also showed that PDPN knockdown inhibited the viability, adhesive ability, and migratory capacity of CAL-27 and CTSC-3 cells, effects that could be reversed by the application of a miR-532-3p inhibitor. Additionally, PDPN was found to be a direct target of miR-532-3p. CONCLUSIONS This research suggested that by targeting PDPN, miR-532-3p could inhibit cell proliferation viability, adhesion, and migration in TSCC. Findings also revealed that the miR-532-3p/PDPN axis might provide more insights into the prognosis and treatment of TSCC.
Collapse
|
15
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
16
|
Tsai HJ, Cheng JC, Kao ML, Chiu HP, Chiang YH, Chen DP, Rau KM, Liao HR, Tseng CP. Integrin αIIbβ3 outside-in signaling activates human platelets through serine 24 phosphorylation of Disabled-2. Cell Biosci 2021; 11:32. [PMID: 33557943 PMCID: PMC7869483 DOI: 10.1186/s13578-021-00532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Bidirectional integrin αIIbβ3 signaling is essential for platelet activation. The platelet adaptor protein Disabled-2 (Dab2) is a key regulator of integrin signaling and is phosphorylated at serine 24 in eukaryotic cells. However, the mechanistic insight and function of Dab2-serine 24 phosphorylation (Dab2-pSer24) in platelet biology are barely understood. This study aimed to define whether and how Dab2 is phosphorylated at Ser24 during platelet activation and to investigate the effect of Dab2-pSer24 on platelet function. Results An antibody with confirmed specificity for Dab2-pSer24 was generated. By using this antibody as a tool, we showed that protein kinase C (PKC)-mediated Dab2-pSer24 was a conservative signaling event when human platelets were activated by the platelet agonists such as thrombin, collagen, ADP, 12-O-tetradecanoylphorbol-13-acetate, and the thromboxane A2 activator U46619. The agonists-stimulated Dab2-pSer24 was attenuated by pretreatment of platelets with the RGDS peptide which inhibits integrin outside-in signaling by competitive binding of integrin αIIb with fibrinogen. Direct activation of platelet integrin outside-in signaling by combined treatment of platelets with manganese dichloride and fibrinogen or by spreading of platelets on fibrinogen also resulted in Dab2-pSer24. These findings implicate that Dab2-pSer24 was associated with the outside-in signaling of integrin. Further analysis revealed that Dab2-pSer24 was downstream of Src-PKC-axis and phospholipase D1 underlying the integrin αIIbβ3 outside-in signaling. A membrane penetrating peptide R11-Ser24 which contained 11 repeats of arginine linked to the Dab2-Ser24 phosphorylation site and its flanking sequences (RRRRRRRRRRR19APKAPSKKEKK29) and the R11-S24A peptide with Ser24Ala mutation were designed to elucidate the functions of Dab2-pSer24. R11-Ser24 but not R11-S24A inhibited agonists-stimulated Dab2-pSer24 and consequently suppressed platelet spreading on fibrinogen, with no effect on platelet aggregation and fibrinogen binding. Notably, Ser24 and the previously reported Ser723 phosphorylation (Dab2-pSer723) occurred exclusively in a single Dab2 molecule and resulted in distinctive subcellular distribution and function of Dab2. Dab2-pSer723 was mainly distributed in the cytosol of activated platelets and associated with integrin inside-out signaling, while Dab2-pSer24 was mainly distributed in the membrane fraction of activated platelets and associated with integrin outside-in signaling. Conclusions These findings demonstrate for the first time that Dab2-pSer24 is conservative in integrin αIIbβ3 outside-in signaling during platelet activation and plays a novel role in the control of cytoskeleton reorganization and platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, Republic of China
| | - Man-Leng Kao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Hung-Pin Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Yi-Hsuan Chiang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, 824, Taiwan, Republic of China.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 824, Taiwan, Republic of China
| | - Hsiang-Ruei Liao
- Graduate institute of Natural Products, College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan, Republic of China.,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China. .,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
17
|
Tsai WS, Hung WS, Wang TM, Liu H, Yang CY, Wu SM, Hsu HL, Hsiao YC, Tsai HJ, Tseng CP. Circulating tumor cell enumeration for improved screening and disease detection of patients with colorectal cancer. Biomed J 2020; 44:S190-S200. [PMID: 35292267 PMCID: PMC9068522 DOI: 10.1016/j.bj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The immunochemical fecal occult blood test (iFOBT) for colorectal cancer (CRC) screening and the serum carcinoembryonic antigen (CEA) assay for disease detection of CRC is associated with a high false-positive rate and a low detection sensitivity, respectively. There is an unmet need to define additional modalities to complement these assays. Different subsets of circulating tumor cells (CTCs) are present in the peripheral blood of cancer patients. Whether or not CTCs testing supplements these clinical assays and is valuable for patients with CRC was investigated. Methods CTCs were enriched from pre-operative patients with CRC (n = 109) and the non-cancerous controls (n = 65). CTCs expressing either epithelial cell adhesion molecule (EpCAM) or podoplanin (PDPN, the marker associated with poor cancer prognosis) were defined by immunofluorescence staining and were analyzed alone or in combination with iFOBT or serum CEA. Results Patients with early or advanced stage of CRC can be clearly identified and differentiated from the non-cancerous controls (p < 0.001) by EpCAM+-CTC or PDPN+-CTC count. The sensitivity and specificity of EpCAM+-CTCs was 85.3% and 78.5%, respectively, when the cutoff value was 23 EpCAM+-CTCs/mL of blood; and the sensitivity and specificity of PDPN+-CTCs was 78.0% and 75.4%, respectively, when the cutoff value was 7 PDPN+-CTCs/mL of blood. Combined analysis of iFOBT with the EpCAM+-CTC and PDPN+-CTC count reduced the false-positive rate of iFOBT from 56.3% to 18.8% and 23.4%, respectively. Combined analysis of serum CEA with the EpCAM+-CTC and PDPN+-CTC count increased the disease detection rate from 30.3% to 89.9% and 86.2%, respectively. Conclusion CTC testing could supplement iFOBT to improve CRC screening and supplement serum CEA assay for better disease detection of patients with CRC.
Collapse
|
18
|
Häfner SJ. Bargain with the tooth fairy - The savings accounts for dental stem cells. Biomed J 2020; 43:99-106. [PMID: 32333995 PMCID: PMC7195095 DOI: 10.1016/j.bj.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the hard times COVID-19 has imposed on us, the Biomedical Journal strives to provide fresh and compelling reading material - to be enjoyed safely from home. In this issue, we glance behind the scenes of dental stem cell preservation for potential therapeutic use, and discover that cancer cells hijack podoplanin expression to induce thrombosis. Moreover, we learn how the helicase DDX17 promotes tumour stemness, how genetic defects in meiosis and DNA repair cause premature ovarian insufficiency, and that the brain-derived neurotrophic factor is associated with several psychiatric diseases. Further accounts relate the role of miR-95-3p in colorectal cancer, the protective power of eggplants against mercury poisoning, and the predictive value of inhibin A for premature delivery. Finally, the very rare case of adenoid cystic carcinoma in the external auditory canal receives some attention, and we get to read up on how 3D imaging and modelling combines functional and aesthetic repair of cleft lip and palate cases.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
19
|
Rau KM, Liu CT, Hsiao YC, Hsiao KY, Wang TM, Hung WS, Su YL, Liu WC, Wang CH, Hsu HL, Chuang PH, Cheng JC, Tseng CP. Sequential Circulating Tumor Cell Counts in Patients with Locally Advanced or Metastatic Hepatocellular Carcinoma: Monitoring the Treatment Response. J Clin Med 2020; 9:E188. [PMID: 32071283 PMCID: PMC7019972 DOI: 10.3390/jcm9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common causes of cancer death in men. Whether or not a longitudinal follow-up of circulating tumor cells (CTCs) before and at different time points during systemic/targeted therapy is useful for monitoring the treatment response of patients with locally advanced or metastatic HCC has been evaluated in this study. Blood samples (n = 104) were obtained from patients with locally advanced or metastatic HCC (n = 30) for the enrichment of CTCs by a negative selection method. Analysis of the blood samples from patients with defined disease status (n = 81) revealed that those with progressive disease (PD, n = 37) had significantly higher CTC counts compared to those with a partial response (PR) or stable disease (SD; n = 44 for PR + SD, p = 0.0002). The median CTC count for patients with PD and for patients with PR and SD was 50 (interquartile range 21-139) and 15 (interquartile range 4-41) cells/mL of blood, respectively. A longitudinal analysis of patients (n = 17) after a series of blood collections demonstrated that a change in the CTC count correlated with the patient treatment response in most of the cases and was particularly useful for monitoring patients without elevated serum alpha-fetoprotein (AFP) levels. Sequential CTC enumeration during treatment can supplement standard medical tests and benefit the management of patients with locally advanced or metastatic HCC, in particular for the AFP-low cases.
Collapse
Affiliation(s)
- Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung 824, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Chien-Ting Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Chiao Hsiao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Kai-Yin Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
| | - Tzu-Min Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Wei-Shan Hung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Yu-Li Su
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wei-Ching Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
| | - Cheng-Hsu Wang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Hsueh-Ling Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Po-Heng Chuang
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Linko Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|