1
|
Oda H, Annibaldi A, Kastner DL, Aksentijevich I. Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases. Annu Rev Immunol 2025; 43:313-342. [PMID: 40279314 DOI: 10.1146/annurev-immunol-090222-105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany;
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| |
Collapse
|
2
|
Nikolova D, Todorova Y, Hammoudeh Z, Rukova B, Emilova R, Aleksova M, Koleva V, Nikolova M. Gene Expression Changes as Biomarkers of Immunosenescence in Bulgarian Individuals of Active Age. Biomedicines 2025; 13:721. [PMID: 40149697 PMCID: PMC11940667 DOI: 10.3390/biomedicines13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Immunosenescence implies innate and adaptive immunity dysfunction, which naturally occurs with aging. It is a complex multifactorial process which can be triggered by either genetic changes, immune changes or both. Numerous research studies have shown that the process of senescence goes alongside chronic immune activation. The purpose of this study is to analyze the changes in the expression of genes associated with adaptive and innate immune responses in order to identify reliable biomarkers for immune aging. Methods: For that aim, 55 clinically healthy individuals of active age (21-65 years) were distributed based on immunophenotyping in two groups, with and without signs of premature senescence. A gene expression analysis was subsequently made on those two groups, and the differentially expressed genes were presented and interpreted. Results: Altogether, forty-eight (48) genes exhibited differential expression between the two groups, most of which showed up-regulation (45) (fold change more than 2), and only three were down-regulated (fold change less than -2). The highest positive fold change showed IL-1β (10.76), BCL6 (13.25) and CCL4 (15.91), while the highest negative fold changes were documented for IL23R (-3.10), IL5 (-2.66) and PTGS2 (COX-2) (-2.15). Conclusions: Our results reveal that immunosenescence is positively associated with chronic inflammation, which is typical for the aging process. On the other hand, we identified markers of possible protective effects against oxidative stress and tumorigenesis. These findings can aid the early diagnosis of chronic degenerative diseases in subclinical phase, as well as the development of strategies to prevent the processes of premature immune aging.
Collapse
Affiliation(s)
- Dragomira Nikolova
- Department of Medical Genetics, Medical Faculty, Medical University, 1431 Sofia, Bulgaria;
| | - Yana Todorova
- National Reference Laboratory of Immunology, National Center for Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.T.); (R.E.); (M.A.); (M.N.)
| | - Zora Hammoudeh
- Department of Clinical Laboratory, Acibadem City Clinic Tokuda Hospital, 1407 Sofia, Bulgaria; (Z.H.); (V.K.)
| | - Blaga Rukova
- Department of Medical Genetics, Medical Faculty, Medical University, 1431 Sofia, Bulgaria;
| | - Radoslava Emilova
- National Reference Laboratory of Immunology, National Center for Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.T.); (R.E.); (M.A.); (M.N.)
| | - Milena Aleksova
- National Reference Laboratory of Immunology, National Center for Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.T.); (R.E.); (M.A.); (M.N.)
| | - Vesselina Koleva
- Department of Clinical Laboratory, Acibadem City Clinic Tokuda Hospital, 1407 Sofia, Bulgaria; (Z.H.); (V.K.)
| | - Maria Nikolova
- National Reference Laboratory of Immunology, National Center for Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.T.); (R.E.); (M.A.); (M.N.)
| |
Collapse
|
3
|
Rao VK. Beyond FAScinating: advances in diagnosis and management of autoimmune lymphoproliferative syndrome and activated PI3 kinase δ syndrome. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:126-136. [PMID: 39644063 PMCID: PMC11665610 DOI: 10.1182/hematology.2024000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Refractory autoimmune mutilineage cytopenias can present in childhood associated with chronic nonmalignant lymphoproliferation (splenomegaly, hepatomegaly, and/or lymphadenopathy). Cytopenias due to peripheral destruction and sequestration have been well recognized since the 1950s and are often lumped together as eponymous syndromes, such as Evans syndrome and Canale-Smith syndrome. Though their clinical and genetic diagnostic workup may appear daunting, it can provide the basis for early intervention, genetic counseling, and empirical and targeted therapies. Autoimmune lymphoproliferative syndrome (ALPS), activated phosphatidylinositol 3-kinase delta syndrome (APDS), and many other related genetic disorders are otherwise collectively known as inborn errors of immunity (IEI). They present in early childhood as refractory autoimmune cytopenias due to immune dysregulation leading to lymphadenopathy, splenomegaly, and increased susceptibility to lymphoma. More recently, controlled clinical trials have shown that some of these immune system disorders with hematological manifestations might be more readily amenable to specific targeted treatments, thus preventing end-organ damage and associated comorbidities. Over the last 20 years, both rapamycin and mycophenolate mofetil have been successfully used as steroid-sparing long-term measures in ALPS. Current therapeutic options for APDS/PASLI (phosphoinositide 3-kinase [PI3K]-associated senescent T lymphocytes, lymphadenopathy, and immunodeficiency) include the orally bioavailable PI3Kδ inhibitor, leniolisib, which was licensed by the US Food and Drug Administration (FDA) in 2023 for use in individuals older than 12 years as a targeted treatment. Paradigms learned from patients with rare genetic disorders like ALPS and APDS may help in exploring and streamlining molecular therapy strategies in the wider group of IEIs presenting with refractory cytopenias and lymphoproliferation.
Collapse
|
4
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Wu Q, Sun B, Hou J, Hui X, Wang C, Wang W, Ying W, Liu L, Zhu L, Wang Y, Li Q, Yu M, Zhou W, Chen Y, Wu B, Sun J, Zhou Q, Qian F, Wang X. Novel Compound Heterozygous Variants in the FAS Gene Lead to Fetal Onset of Autoimmune Lymphoproliferative Syndrome (ALPS). J Clin Immunol 2024; 45:23. [PMID: 39384643 DOI: 10.1007/s10875-024-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/21/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE FAS gene defects lead to autoimmune lymphoproliferative syndrome (ALPS), which is often inherited in an autosomal dominant and rarely in an autosomal recessive manner. We report a case of a newborn girl with novel compound heterozygous variants in FAS and reveal the underlying mechanism. METHODS Whole-exome sequencing (WES) was used to identify pathogenic variants. Multiparametric flow cytometry analysis, phosflow analysis, and FAS-induced apoptosis assays were used to explore the effects of the variants on FAS expression, apoptosis, and immunophenotype. The HEK293T cells were used to assess the impact of the variants on protein expression and FAS-induced apoptosis. RESULTS The patient was born with hepatosplenomegaly, anemia, and thrombocytopenia. She also experienced COVID-19, rotavirus infection, herpes simplex virus infection, and severe pneumonia. The proportion of double-negative T cells (DNTs) was significantly elevated. Novel FAS compound heterozygous variants c.310T > A (p.C104S) and c.702_704del (p.T235del) were identified. The apoptotic ability of T cells was defective, and FAS expression on the surface of T cells was deficient. The T235del variant decreased FAS expression, and the C104S protein remained in the endoplasmic reticulum (ER) and could not translocate to the cell surface. Both mutations resulted in loss-of-function in terms of FAS-induced apoptosis in HEK293T cells. The DNTs were mainly terminally differentiated T (TEMRA) and CD45RA+HLA-DR+, with high expression of CD85j, PD-1, and CD57. The percentage of Th1, Tfh, and autoreactive B cells were significantly increased in the patient. The abnormal immunophenotyping was partially attenuated by sirolimus treatment. CONCLUSIONS We identified two variants that significantly affect FAS expression or localization, leading to early disease onset of in the fetus. Abnormalities in the mTOR pathway are associated with a favorable response to sirolimus.
Collapse
Affiliation(s)
- Qi Wu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Bijun Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Hou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoying Hui
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Luyao Liu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Zhu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Qifan Li
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Weitao Zhou
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Chen
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
| |
Collapse
|
6
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
7
|
Yang Y, Chen M, Lan R, Gong H. LINC01410 accelerates the invasion of trophoblast cells by modulating METTL3/Fas. Mol Biol Rep 2024; 51:895. [PMID: 39115693 PMCID: PMC11310249 DOI: 10.1007/s11033-024-09834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Insufficient trophoblast invasion, culminating in suboptimal uterine spiral artery remodeling, is pinpointed as a pivotal contributor to preeclampsia (PE) development. LINC01410 has been documented to be increased in various neoplasms, and is significantly associated with the invasive capabilities of tumor cells. Nonetheless, its function and the mechanisms in the pathogenesis of PE require further investigation. METHODS AND RESULTS LINC01410 and methyltransferase-like 3 (METTL3) were ectopically expressed in HTR-8/Svneo cells via lentiviral transduction. Subsequently, the cells' invasive capabilities and apoptosis rates were evaluated employing Transwell assays and flow cytometry, respectively. The interplay between LINC01410 and METTL3, alongside the m6A methylation of FAS, was probed through RNA immunoprecipitation (RIP). Additionally, the association between FAS and METTL3 was elucidated via Coimmunoprecipitation (Co-IP) assays. The protein level of NF-κB, BAX, and BCL-2 in LINC01410-overexpressing cells was detected by Western blot. Our findings revealed that LINC01410 elevation increased the invasive ability of HTR-8/Svneo cells, directly impacting METTL3 then leading to its reduced expression. Conversely, heightened METTL3 expression mitigated invasiveness while enhancing apoptosis in these cells. Moreover, METTL3's interaction with FAS led to increased FAS expression, subject to m6A methylation. A surge in LINC01410 markedly decreased both mRNA and protein levels of FAS. Furthermore, LINC01410 overexpression significantly reduced NF-κB and BAX protein levels while augmenting BCL-2. CONCLUSIONS Upregulation of LINC01410 expression promotes trophoblast cell invasion by inhibiting FAS levels through modified m6A alteration and suppressing the NF-κB pathway. These findings underscore the pivotal role of LINC01410 in regulating trophoblast cell invasion and propose it as a promising therapeutic strategy for preventing or alleviating PE. This offers valuable insights for the clinical treatment of PE, for which definitive targeted therapy methods are currently lacking.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Meihua Chen
- Hainan Medical University, 3 Xue yuan Road, Long hua District, Haikou, Hainan, 571199, China
| | - Ruihong Lan
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Humin Gong
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China.
| |
Collapse
|
8
|
Xin S, Zhang Y, Zhang Z, Li Z, Sun X, Liu X, Jin L, Li W, Tang C, Mei W, Cao Q, Wang H, Wei Z, Zhou Z, Li R, Wen X, Yang G, Chen W, Zheng J, Ye L. ScRNA-seq revealed the tumor microenvironment heterogeneity related to the occurrence and metastasis in upper urinary tract urothelial carcinoma. Cancer Gene Ther 2024; 31:1201-1220. [PMID: 38877164 DOI: 10.1038/s41417-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Metastasis is the greatest clinical challenge for UTUCs, which may have distinct molecular and cellular characteristics from earlier cancers. Herein, we provide single-cell transcriptome profiles of UTUC para cancer normal tissue, primary tumor lesions, and lymphatic metastases to explore possible mechanisms associated with UTUC occurrence and metastasis. From 28,315 cells obtained from normal and tumor tissues of 3 high-grade UTUC patients, we revealed the origin of UTUC tumor cells and the homology between metastatic and primary tumor cells. Unlike the immunomicroenvironment suppression of other tumors, we found no immunosuppression in the tumor microenvironment of UTUC. Moreover, it is imperative to note that stromal cells are pivotal in the advancement of UTUC. This comprehensive single-cell exploration enhances our comprehension of the molecular and cellular dynamics of metastatic UTUCs and discloses promising diagnostic and therapeutic targets in cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yanwei Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Zhengzhou University, Luoyang Central Hospital, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhen Zhou
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Rongbing Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
9
|
Rowczenio D, Aksentijevich I. Genetic Approaches to Study Rheumatic Diseases and Its Implications in Clinical Practice. Arthritis Rheumatol 2024; 76:1169-1181. [PMID: 38433603 DOI: 10.1002/art.42841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Patients with rare and complex rheumatic diseases (RDs) present with immense clinical variability inherent to all immunologic diseases. In addition to systemic and organ-specific inflammation, patients may display features of immunodeficiency or allergy, which may represent major diagnostic and therapeutic challenges. The person's genetic architecture has been a well-established risk factor for patients with RDs, albeit to variable degrees. Patients with early-onset diseases and/or positive family history (FH) have a strong genetic component, whereas patients with late-onset RDs demonstrate a more complex interplay of genetic and environmental risk factors. Overall, the genetic studies in patients with RDs have been instrumental to our understanding of innate and adaptive immunity in human health and disease. The elucidation of the molecular causes underlying rare diseases has played a major role in the identification of genes that are critical in the regulation of inflammatory responses. In addition, studies of patients with rare disorders may help determine the mechanisms of more complex autoimmune diseases by identifying variants with small effect sizes in the same genes. In contrast, studies of patients with common RDs are conducted in cohorts of patients with well-established phenotypes and ancestry-matched controls, and they aim to discover disease-related pathways that can inform the development of novel targeted therapies. Knowing the genetic cause of a disease has helped patients and families understand the disease progression and outcome. Here, we discuss the current understanding of genetic heritability and challenges in the diagnosis of RDs in patients and how this field may develop in the future.
Collapse
|
10
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wen P, Zhao Y, Yang M, Yang P, Nan K, Liu L, Xu P. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation. J Cell Mol Med 2024; 28:e18557. [PMID: 39031474 PMCID: PMC11258886 DOI: 10.1111/jcmm.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Yan Zhao
- Department of Laboratory, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Mingyi Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Kai Nan
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Lin Liu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Xu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
12
|
Consonni F, Moreno S, Vinuales Colell B, Stolzenberg MC, Fernandes A, Parisot M, Masson C, Neveux N, Rosain J, Bamberger S, Vigue MG, Malphettes M, Quartier P, Picard C, Rieux-Laucat F, Magerus A. Study of the potential role of CASPASE-10 mutations in the development of autoimmune lymphoproliferative syndrome. Cell Death Dis 2024; 15:315. [PMID: 38704374 PMCID: PMC11069523 DOI: 10.1038/s41419-024-06679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.
Collapse
Affiliation(s)
- Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centre of Excellence, Division of Paediatric Oncology/Haematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Solange Moreno
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Blanca Vinuales Colell
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Marie-Claude Stolzenberg
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Alicia Fernandes
- Plateforme Vecteurs Viraux et Transfert de Gènes, SFR Necker, INSERM US 24/CNRS UAR 3633, Faculté de santé Necker, Paris, France
| | - Mélanie Parisot
- University of Paris Cité, Paris, France
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris, France
| | - Cécile Masson
- University of Paris Cité, Paris, France
- Bioinformatics Core Facility, Paris-Cité University-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Nathalie Neveux
- Laboratory of Biological Nutrition, EA 4466, Faculty of Pharmacy, Paris University, Paris, France
- Clinical Chemistry Department, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jérémie Rosain
- University of Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sarah Bamberger
- Pediatrics Gastroenterology and Nutrition, Robert-Debré Hospital, Paris, France
| | - Marie-Gabrielle Vigue
- Pediatrics, Infectiology, Rhumatology, Hôpital Arnaud-de-Villeneuve, CHRU de Montpellier, Montpellier, France
| | - Marion Malphettes
- University of Paris Cité, Paris, France
- Department of Clinical Immunology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Pierre Quartier
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- University of Paris Cité, Paris, France.
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France.
| |
Collapse
|
13
|
Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): A proposed approach to redefining ALPS and other lymphoproliferative immune disorders. J Allergy Clin Immunol 2024; 153:67-76. [PMID: 37977527 PMCID: PMC10841637 DOI: 10.1016/j.jaci.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - David T Teachey
- Division of Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Frederic Rieux-Laucat
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Rensing-Ehl A, Lorenz MR, Führer M, Willenbacher W, Willenbacher E, Sopper S, Abinun M, Maccari ME, König C, Haegele P, Fuchs S, Castro C, Kury P, Pelle O, Klemann C, Heeg M, Thalhammer J, Wegehaupt O, Fischer M, Goldacker S, Schulte B, Biskup S, Chatelain P, Schuster V, Warnatz K, Grimbacher B, Meinhardt A, Holzinger D, Oommen PT, Hinze T, Hebart H, Seeger K, Lehmberg K, Leahy TR, Claviez A, Vieth S, Schilling FH, Fuchs I, Groß M, Rieux-Laucat F, Magerus A, Speckmann C, Schwarz K, Ehl S. Abnormal biomarkers predict complex FAS or FADD defects missed by exome sequencing. J Allergy Clin Immunol 2024; 153:297-308.e12. [PMID: 37979702 DOI: 10.1016/j.jaci.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Elevated TCRαβ+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.
Collapse
Affiliation(s)
- Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Wolfgang Willenbacher
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria; Syndena GmbH, Connect to cure, Innsbruck, Austria
| | - Ella Willenbacher
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Mario Abinun
- Paediatric Immunology, Great North Children's Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - Pauline Haegele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carla Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivier Pelle
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Thalhammer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Paediatric Immunology, Great North Children's Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Oliver Wegehaupt
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Sigune Goldacker
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn Schulte
- Center for Human Genetics, Paul-Ehrlich-Str. 23, Tuebingen, Germany
| | - Saskia Biskup
- Center for Human Genetics, Paul-Ehrlich-Str. 23, Tuebingen, Germany
| | | | - Volker Schuster
- Children's Hospital, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic for Rheumatolgy and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic for Rheumatolgy and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Oncology, Hematology and Immunodeficiencies, University Hospital Giessen, Giessen, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany; Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Hinze
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Holger Hebart
- Department of Internal Medicine, Kliniken Ostalb, Stauferklinikum, Mutlangen, Germany
| | - Karlheinz Seeger
- Charité Universitätsmedizin Berlin, Department of Pediatric Oncology/Hematology, Augustenburger Pl. 1, Berlin, Germany
| | - Kai Lehmberg
- Department of Paediatric Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology/ID, Children's Health Ireland (CHI) at Crumlin, Dublin; University of Dublin, Trinity College, Dublin, Ireland
| | - Alexander Claviez
- Department of Pediatrics, University Medical Center, UKSH Campus Kiel, Kiel, Germany
| | - Simon Vieth
- Department of Pediatrics, University Medical Center, UKSH Campus Kiel, Kiel, Germany
| | - Freimut H Schilling
- Department of Pediatric Oncology-Hematology-Immunology, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Aude Magerus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes (Basel) 2023; 14:1896. [PMID: 37895245 PMCID: PMC10606310 DOI: 10.3390/genes14101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Mariano A. Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
16
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|
18
|
Maccari ME, Schneider P, Smulski CR, Meinhardt A, Pinto F, Gonzalez-Granado LI, Schuetz C, Sica MP, Gross M, Fuchs I, Kury P, Heeg M, Vocat T, Willen L, Thomas C, Hühn R, Magerus A, Lorenz M, Schwarz K, Rieux-Laucat F, Ehl S, Rensing-Ehl A. Revisiting autoimmune lymphoproliferative syndrome caused by Fas ligand mutations. J Allergy Clin Immunol 2023; 151:1391-1401.e7. [PMID: 36621650 DOI: 10.1016/j.jaci.2022.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fas ligand (FasL) is expressed by activated T cells and induces death in target cells upon binding to Fas. Loss-of-function FAS or FASLG mutations cause autoimmune-lymphoproliferative syndrome (ALPS) characterized by expanded double-negative T cells (DNT) and elevated serum biomarkers. While most ALPS patients carry heterozygous FAS mutations, FASLG mutations are rare and usually biallelic. Only 2 heterozygous variants were reported, associated with an atypical clinical phenotype. OBJECTIVE We revisited the significance of heterozygous FASLG mutations as a cause of ALPS. METHODS Clinical features and biomarkers were analyzed in 24 individuals with homozygous or heterozygous FASLG variants predicted to be deleterious. Cytotoxicity assays were performed with patient T cells and biochemical assays with recombinant FasL. RESULTS Homozygous FASLG variants abrogated cytotoxicity and resulted in early-onset severe ALPS with elevated DNT, raised vitamin B12, and usually no soluble FasL. In contrast, heterozygous variants affected FasL function by reducing expression, impairing trimerization, or preventing Fas binding. However, they were not associated with elevated DNT and vitamin B12, and they did not affect FasL-mediated cytotoxicity. The dominant-negative effects of previously published variants could not be confirmed. Even Y166C, causing loss of Fas binding with a dominant-negative effect in biochemical assays, did not impair cellular cytotoxicity or cause vitamin B12 and DNT elevation. CONCLUSION Heterozygous loss-of-function mutations are better tolerated for FASLG than for FAS, which may explain the low frequency of ALPS-FASLG.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Cristian Roberto Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Fernando Pinto
- Department of Haematology, Royal Hospital for Children Glasgow, Glasgow, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 octubre, Madrid, France; Instituto de Investigation Hospital 12 octubre (imas12), Madrid, France; School of Medicine, Complutense University, Madrid, France
| | - Catharina Schuetz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Mauricio Pablo Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Miriam Gross
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tatjana Vocat
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Laure Willen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caroline Thomas
- Department of Pediatric Oncology and Hematology, University Hospital of Nantes, Nantes, France
| | - Regina Hühn
- Clinic for Paediatrics and Adolescent Medicine, University Hospital Halle (Saale), Halle, Germany
| | - Aude Magerus
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg, Hessen, Ulm, Germany
| | - Frederic Rieux-Laucat
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Jiang F, Yang R, Xue D, Li R, Tan M, Zeng Z, Xu L, Liu L, Song Y, Lin F. Effects of a natural nutritional supplement on immune cell infiltration and immune gene expression in exercise-induced injury. Front Nutr 2022; 9:987545. [PMID: 36185677 PMCID: PMC9523794 DOI: 10.3389/fnut.2022.987545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory immune response plays a key role in exercise-induced injury and healing; however, the relevant regulatory mechanisms of immune infiltration in exercise-induced injuries remain less studied. In the present study, a highly efficient system for screening immunity-related biomarkers and immunomodulatory ability of natural nutritional supplements was developed by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. The findings demonstrated that resting natural killer cells showed a higher rate of infiltration after exercise, whereas naive B cells and activated dendritic cells showed higher rate of infiltration before exercise. Four key genes, namely PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries and inflammatory immune response. In total, 26 natural compounds including echinacoside, eugenol, tocopherol, and casuariin were predicted by using the HERB databases. Molecular docking analysis showed that GZMB, FASLG, and CCL4 bound to echinacoside. In vivo experiments in mice showed that after 30 min swimming, natural killer (NK) cells showed high infiltration rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly expressed; however, echinocandin significantly reduced the level of NK cells and decreased the expression of the four key genes post exercise. This natural nutritional supplement may act to protect against inflammatory injury after exercise by suppressing specific immune infiltration.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Diya Xue
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rong Li
- Department of Obstetrics, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Tan
- Wenhua Community Health Service Center, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linling Liu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Fengxia Lin,
| |
Collapse
|
20
|
Barmettler S, Sharapova SO, Milota T, Greif PA, Magg T, Hauck F. Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity With Cancer Predisposition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1725-1736.e2. [PMID: 35364342 DOI: 10.1016/j.jaip.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.
Collapse
Affiliation(s)
- Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University Hospital and Motol University Hospital, Prague, Czechia
| | - Philipp A Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
21
|
Huang J, Lu R, Zhong D, Weng Y, Liao L. A Novel Necroptosis-Associated IncRNAs Signature for Prognosis of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:907392. [PMID: 35754839 PMCID: PMC9213787 DOI: 10.3389/fgene.2022.907392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The prognosis of head and neck squamous cell carcinoma (HNSCC) is poor. Necroptosis is a novel programmed form of necrotic cell death. The prognostic value of necroptosis-associated lncRNAs expression in HNSCC has not been explored. Methods: We downloaded mRNA expression data of HNSCC patients from TCGA databases. Prognostic lncRNAs were identified by univariate Cox regression. LASSO was used to establish a model with necroptosis-related lncRNAs. Kaplan-Meier analysis and ROC were applied to verify the model. Finally, functional studies including gene set enrichment analyses, immune microenvironment analysis, and anti-tumor compound IC50 prediction were performed. Results: We identified 1,117 necroptosis-related lncRNAs. The Cox regression showed 55 lncRNAs were associated with patient survival (p < 0.05). The risk model of 24- lncRNAs signature categorized patients into high and low risk groups. The patients in the low-risk group survived longer than the high-risk group (p < 0.001). Validation assays including ROC curve, nomogram and correction curves confirmed the prediction capability of the 24-lncRNA risk mode. Functional studies showed the two patient groups had distinct immunity conditions and IC50. Conclusion: The 24-lncRNA model has potential to guide treatment of HNSCC. Future clinical studies are needed to verify the model.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Rong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, School of Medicine, Xiamen University, Xiamen, China
| | - Dongta Zhong
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Youliang Weng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Lianming Liao
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Wang G, Duan P, Liu F, Wei Z. Long non-coding RNA CASC7 suppresses malignant behaviors of breast cancer by regulating miR-21-5p/FASLG axis. Bioengineered 2021; 12:11555-11566. [PMID: 34889164 PMCID: PMC8809951 DOI: 10.1080/21655979.2021.2010372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Recently, it has been increasingly proved that lncRNAs are functionally involved in a majority of tumor progression. LncRNA CASC7 has also been revealed to participate in the development of several cancers as a tumor promoter or suppressor. Herein, we focus on uncovering the role and underlying molecular mechanism of CASC7 in breast cancer. Tumor tissues and the paired paracancerous tissues from the breast cancer patients were used to evaluate the level of CASC7 in breast cancer. By analyzing the CASC7 expression in breast cancer cell lines, both the expression levels of CASC7 in cancer tissues and cell lines were obviously downregulated compared to those in paired paracancerous tissues and normal human epithelial MCF10A cells. Subsequently, the construction of lentivirus overexpression system (oe-CASC7 and oe-NC) was used to elevate the expression of CASC7. A series of functional experiments were conducted to show that the cell proliferation, migration, and invasion were inhibited when CASC7 overexpressed in breast cancer cells. Meanwhile, the apoptosis of oe-CASC7 cells was induced compared to the oe-NC breast cancer cells. We further confirmed that CASC7 functions by regulating miR-21-5p/FASLG axis. Finally, a xenograft model in nude mice verified that CASC7 was a tumor suppressor in breast cancer. These results suggest that lncRNA CASC7 suppresses to malignant behaviors of breast cancer by modulating miR-21-5p/FASLG axis. Abbreviations lncRNAs: long non-coding RNAs; ceRNA: competing endogenous RNA; CASC7: cancer susceptibility candidate 7; miRNAs: MicroRNAs; MAPK10: mitogen-activated protein kinase 10; FASLG: Tumor Necrosis Factor Ligand Superfamily Member 6; FAS: Tumor Necrosis Factor Receptor Superfamily Member 6.
Collapse
Affiliation(s)
- Genjin Wang
- Department of General Surgery, Section IV, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Feng Liu
- Department of General Surgery, Section IV, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zhengkuo Wei
- Department of General Surgery, Section IV, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
23
|
Kattner AA. We refuse to die - T cells causing havoc. Biomed J 2021; 44:377-382. [PMID: 34508914 PMCID: PMC8514847 DOI: 10.1016/j.bj.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/28/2022] Open
Abstract
This issue of the Biomedical Journal offers insights into the origin and consequences of different lymphoproliferative disorders and autoimmunity. Furthermore we learn about RASopathies, a group of congenital disorders that occur rather frequently. Then the current ELISA assays for measuring antibody avidity are critically examined, the relationship between female sex steroid hormones and cardiovascular disease is explored, and an assessment of persistent diarrhea as a leading cause of child death in India is performed. Additionally, there are several articles about COVID-19, presenting its connection to neutrophil recruitment and acute respiratory distress syndrome, as well as its relation to changes in the vascular glycocalyx. A COVID-19 case study from the emergency room is presented. We are also introduced to novel treatment approaches against COVID-19 like the construction of peptide-based vaccines, or targeting the respiratory tract microbiome. Finally, there is an assessment about how prepared medical students at a Taiwan University feel for independent practice, and another article about the treatment of intravascular large B cell lymphoma in a Taiwanese institution. Lastly, we discover possible surgery techniques in the case of external auditory canal osteoma.
Collapse
|
24
|
Abstract
This special issue contains four review articles that describe advances in analysis of mutations responsible for the autoimmune lymphoproliferative syndrome (ALPS). This disease is triggered by a family of mutations in genes involved in the extrinsic apoptotic pathway such as FAS, FASL and CASP10. Advances in sequencing technology have enabled extended genetic testing of patients with various defects in alternative biological have pathways that can cause ALPS-like syndromes. Various gene mutations were identified which affect the CTLA-4 immune checkpoint, the STAT3 pathway and the RAS/MAPK pathway. Tips gleaned from analyses of the different gene mutations involved in ALPS and ALPS-like syndromes are contributing to a better understanding of their functional consequences. Genetic diagnoses of the disease should help us to identify specific therapeutic targets and design personalized treatment for each patient.
Collapse
|
25
|
Szczawińska-Popłonyk A, Grześk E, Schwartzmann E, Materna-Kiryluk A, Małdyk J. Case Report: Autoimmune Lymphoproliferative Syndrome vs. Chronic Active Epstein-Barr Virus Infection in Children: A Diagnostic Challenge. Front Pediatr 2021; 9:798959. [PMID: 35036396 PMCID: PMC8757380 DOI: 10.3389/fped.2021.798959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder characterized by a disruption of the lymphocyte apoptosis pathway, self-tolerance, and immune system homeostasis. Defects in genes within the first apoptosis signal (FAS)-mediated pathway cause an expansion of autoreactive double-negative T cells leading to non-malignant lymphoproliferation, autoimmune disorders, and an increased risk of lymphoma. The aim of the study was to show the diagnostic dilemmas and difficulties in the process of recognizing ALPS in the light of chronic active Epstein-Barr virus (CAEBV) infection. Clinical, immunological, flow cytometric, biomarkers, and molecular genetic approaches of a pediatric patient diagnosed with FAS-ALPS and CAEBV are presented. With the ever-expanding spectrum of molecular pathways associated with autoimmune lymphoproliferative disorders, multiple genetic defects of FAS-mediated apoptosis, primary immunodeficiencies with immune dysregulation, malignant and autoimmune disorders, and infections are included in the differential diagnosis. Further studies are needed to address the issue of the inflammatory and neoplastic role of CAEBV as a triggering and disease-modifying factor in ALPS.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Elzbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Eyal Schwartzmann
- English Division, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadwiga Małdyk
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|