1
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Wang S, Li T, He H, Li Y. Dynamical changes of interaction across functional brain communities during propofol-induced sedation. Cereb Cortex 2024; 34:bhae263. [PMID: 38918077 DOI: 10.1093/cercor/bhae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 μg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.
Collapse
Affiliation(s)
- Shengpei Wang
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Tieyi Rd, Haidian District, Beijing 100038, PR China
| | - Huiguang He
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, PR China
| | - Yun Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, PR China
| |
Collapse
|
3
|
Lawn T, Martins D, O'Daly O, Williams S, Howard M, Dipasquale O. The effects of propofol anaesthesia on molecular-enriched networks during resting-state and naturalistic listening. Neuroimage 2023; 271:120018. [PMID: 36935083 PMCID: PMC10410200 DOI: 10.1016/j.neuroimage.2023.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| |
Collapse
|
4
|
McKinstry-Wu AR, Wasilczuk AZ, Dailey WP, Eckenhoff RG, Kelz MB. In Vivo Photoadduction of Anesthetic Ligands in Mouse Brain Markedly Extends Sedation and Hypnosis. J Neurosci 2023; 43:2338-2348. [PMID: 36849414 PMCID: PMC10072292 DOI: 10.1523/jneurosci.1884-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.
Collapse
Affiliation(s)
- Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Mahoney Institute for Neurosciences, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| |
Collapse
|
5
|
Nir T, Raizman R, Meningher I, Jacob Y, Huang KH, Schwartz AE, Brallier JW, Ahn H, Kundu P, Tang CY, Delman BN, McCormick PJ, Scarpa J, Sano M, Deiner SG, Livny A, Baxter MG, Mincer JS. Lateralisation of subcortical functional connectivity during and after general anaesthesia. Br J Anaesth 2022; 128:65-76. [PMID: 34802696 PMCID: PMC8787782 DOI: 10.1016/j.bja.2021.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Arousal and awareness are two important components of consciousness states. Functional neuroimaging has furthered our understanding of cortical and thalamocortical mechanisms of awareness. Investigating the relationship between subcortical functional connectivity and arousal has been challenging owing to the relatively small size of brainstem structures and thalamic nuclei, and their depth in the brain. METHODS Resting state functional MRI scans of 72 healthy volunteers were acquired before, during, 1 h after, and 1 day after sevoflurane general anaesthesia. Functional connectivity of subcortical regions of interest vs whole brain and homotopic functional connectivity for assessment of left-right symmetry analyses of both cortical and subcortical regions of interest were performed. Both analyses used high resolution atlases generated from deep brain stimulation applications. RESULTS Functional connectivity in subcortical loci within the thalamus and of the ascending reticular activating system was sharply restricted under anaesthesia, featuring a general lateralisation of connectivity. Similarly, left-right homology was sharply reduced under anaesthesia. Subcortical bilateral functional connectivity was not fully restored after emergence from anaesthesia, although greater restoration was seen between ascending reticular activating system loci and specific thalamic nuclei thought to be involved in promoting and maintaining arousal. Functional connectivity was fully restored to baseline by the following day. CONCLUSIONS Functional connectivity in the subcortex is sharply restricted and lateralised under general anaesthesia. This restriction may play a part in loss and return of consciousness. CLINICAL TRIAL REGISTRATION NCT02275026.
Collapse
Affiliation(s)
- Tommer Nir
- Department of Anesthesiology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Inbar Meningher
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yael Jacob
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kuang-Han Huang
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur E Schwartz
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jess W Brallier
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Helen Ahn
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prantik Kundu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Hyperfine Research, Guilford, CT, USA
| | - Cheuk Y Tang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bradley N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick J McCormick
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark G Baxter
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua S Mincer
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Alcaide S, Sitt J, Horikawa T, Romano A, Maldonado AC, Ibanez A, Sigman M, Kamitani Y, Barttfeld P. fMRI lag structure during waking up from early sleep stages. Cortex 2021; 142:94-103. [PMID: 34256198 PMCID: PMC11170464 DOI: 10.1016/j.cortex.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/30/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The brain mechanisms by which we transition from sleep to a conscious state remain largely unknown in humans, partly because of methodological challenges. Here we study a pre-existing dataset of waking up participants originally designed for a study of dreaming (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013) and suggest that suddenly awakening from early sleep stages results from a two-stage process that involves a sequence of cortical and subcortical brain activity. First, subcortical and sensorimotor structures seem to be recruited before most cortical regions, followed by fast, ignition-like whole-brain activation-with frontal regions engaging a little after the rest of the brain. Second, a comparably slower and possibly mirror-reversed stage might take place, with cortical regions activating before subcortical structures and the cerebellum. This pattern of activation points to a key role of subcortical structures for the initiation and maintenance of conscious states.
Collapse
Affiliation(s)
- Santiago Alcaide
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina
| | - Jacobo Sitt
- INSERM, U 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Tomoyasu Horikawa
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Alvaro Romano
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina
| | - Ana Carolina Maldonado
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Córdoba, CIEM-CONICET, Spain
| | - Agustín Ibanez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), USA
| | - Mariano Sigman
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, Buenos Aires, Argentina; Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Yukiyasu Kamitani
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina.
| |
Collapse
|
7
|
Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Picton P, Mashour GA, Hudetz AG. Asymmetric neural dynamics characterize loss and recovery of consciousness. Neuroimage 2021; 236:118042. [PMID: 33848623 PMCID: PMC8310457 DOI: 10.1016/j.neuroimage.2021.118042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are known to disrupt neural interactions in cortical and subcortical brain circuits. While the effect of anesthetic drugs on consciousness is reversible, the neural mechanism mediating induction and recovery may be different. Insight into these distinct mechanisms can be gained from a systematic comparison of neural dynamics during slow induction of and emergence from anesthesia. To this end, we used functional magnetic resonance imaging (fMRI) data obtained in healthy volunteers before, during, and after the administration of propofol at incrementally adjusted target concentrations. We analyzed functional connectivity of corticocortical and subcorticocortical networks and the temporal autocorrelation of fMRI signal as an index of neural processing timescales. We found that en route to unconsciousness, temporal autocorrelation across the entire brain gradually increased, whereas functional connectivity gradually decreased. In contrast, regaining consciousness was associated with an abrupt restoration of cortical but not subcortical temporal autocorrelation and an abrupt boost of subcorticocortical functional connectivity. Pharmacokinetic effects could not account for the difference in neural dynamics between induction and emergence. We conclude that the induction and recovery phases of anesthesia follow asymmetric neural dynamics. A rapid increase in the speed of cortical neural processing and subcorticocortical neural interactions may be a mechanism that reboots consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Vijay Tarnal
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ellen L Janke
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amy M McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul Picton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Dopaminergic brainstem disconnection is common to pharmacological and pathological consciousness perturbation. Proc Natl Acad Sci U S A 2021; 118:2026289118. [PMID: 34301891 PMCID: PMC8325270 DOI: 10.1073/pnas.2026289118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Understanding the neural bases of consciousness is of basic scientific and clinical importance. Human neuroimaging has established that a network of interconnected brain regions known as the default mode network disintegrates in anesthesia and after brain damage that causes disorders of consciousness. However, the neurochemical underpinnings of this network change remain largely unknown. Motivated by preclinical animal work and clinical observations, we found that across pharmacological (sedation) and pathological (disorders of consciousness) consciousness perturbation, the dopaminergic source nucleus, the ventral tegmental area, disconnects from the main nodes of the default mode network. As the severity of this dopaminergic disconnection was associated with default mode network disintegration, we propose that dopaminergic modulation may be a central mechanism for consciousness maintenance. Clinical research into consciousness has long focused on cortical macroscopic networks and their disruption in pathological or pharmacological consciousness perturbation. Despite demonstrating diagnostic utility in disorders of consciousness (DoC) and monitoring anesthetic depth, these cortico-centric approaches have been unable to characterize which neurochemical systems may underpin consciousness alterations. Instead, preclinical experiments have long implicated the dopaminergic ventral tegmental area (VTA) in the brainstem. Despite dopaminergic agonist efficacy in DoC patients equally pointing to dopamine, the VTA has not been studied in human perturbed consciousness. To bridge this translational gap between preclinical subcortical and clinical cortico-centric perspectives, we assessed functional connectivity changes of a histologically characterized VTA using functional MRI recordings of pharmacologically (propofol sedation) and pathologically perturbed consciousness (DoC patients). Both cohorts demonstrated VTA disconnection from the precuneus and posterior cingulate (PCu/PCC), a main default mode network node widely implicated in consciousness. Strikingly, the stronger VTA–PCu/PCC connectivity was, the more the PCu/PCC functional connectome resembled its awake configuration, suggesting a possible neuromodulatory relationship. VTA-PCu/PCC connectivity increased toward healthy control levels only in DoC patients who behaviorally improved at follow-up assessment. To test whether VTA–PCu/PCC connectivity can be affected by a dopaminergic agonist, we demonstrated in a separate set of traumatic brain injury patients without DoC that methylphenidate significantly increased this connectivity. Together, our results characterize an in vivo dopaminergic connectivity deficit common to reversible and chronic consciousness perturbation. This noninvasive assessment of the dopaminergic system bridges preclinical and clinical work, associating dopaminergic VTA function with macroscopic network alterations, thereby elucidating a critical aspect of brainstem–cortical interplay for consciousness.
Collapse
|
9
|
Mashour GA, Palanca BJA, Basner M, Li D, Wang W, Blain-Moraes S, Lin N, Maier K, Muench M, Tarnal V, Vanini G, Ochroch EA, Hogg R, Schwartz M, Maybrier H, Hardie R, Janke E, Golmirzaie G, Picton P, McKinstry-Wu AR, Avidan MS, Kelz MB. Recovery of consciousness and cognition after general anesthesia in humans. eLife 2021; 10:59525. [PMID: 33970101 PMCID: PMC8163502 DOI: 10.7554/elife.59525] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for 3 hr and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ben JA Palanca
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Mathias Basner
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wei Wang
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Stefanie Blain-Moraes
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Nan Lin
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Kaitlyn Maier
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maxwell Muench
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Vijay Tarnal
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Giancarlo Vanini
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - E Andrew Ochroch
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Rosemary Hogg
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marlon Schwartz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hannah Maybrier
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Randall Hardie
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ellen Janke
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Goodarz Golmirzaie
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Paul Picton
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Pujol J, Blanco-Hinojo L, Gallart L, Moltó L, Martínez-Vilavella G, Vilà E, Pacreu S, Adalid I, Deus J, Pérez-Sola V, Fernández-Candil J. Largest scale dissociation of brain activity at propofol-induced loss of consciousness. Sleep 2021; 44:5894260. [PMID: 32813022 DOI: 10.1093/sleep/zsaa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Indexed: 11/14/2022] Open
Abstract
The brain is a functional unit made up of multilevel connected elements showing a pattern of synchronized activity that varies in different states. The wake-sleep cycle is a major variation of brain functional condition that is ultimately regulated by subcortical arousal- and sleep-promoting cell groups. We analyzed the evolution of functional MRI (fMRI) signal in the whole cortex and in a deep region including most sleep- and wake-regulating subcortical nuclei at loss of consciousness induced by the hypnotic agent propofol. Optimal data were obtained in 21 of the 30 healthy participants examined. A dynamic analysis of fMRI time courses on a time-scale of seconds was conducted to characterize consciousness transition, and functional connectivity maps were generated to detail the anatomy of structures showing different dynamics. Inside the magnet, loss of consciousness was marked by the participants ceasing to move their hands. We observed activity synchronization after loss of consciousness within both the cerebral cortex and subcortical structures. However, the evolution of fMRI signal was dissociated, showing a transient reduction of global cortico-subcortical coupling that was restored during the unconscious state. An exception to cortico-subcortical decoupling was a brain network related to self-awareness (i.e. the default mode network) that remained connected to subcortical brain structures. Propofol-induced unconsciousness is thus characterized by an initial, transitory dissociated synchronization at the largest scale of brain activity. Such cortico-subcortical decoupling and subsequent recoupling may allow the brain to detach from waking activity and reorganize into a functionally distinct state.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Lluís Gallart
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luís Moltó
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | | | - Esther Vilà
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Susana Pacreu
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Irina Adalid
- Department of Anesthesiology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar-IMIM and Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
11
|
Wang D, Huang Y, Wang X, Chen X, Li J, Zhang S, Wu J, Liu D, Ma D, Mei W. Circadian differences in emergence from volatile anaesthesia in mice: involvement of the locus coeruleus noradrenergic system. Br J Anaesth 2020; 125:548-559. [PMID: 32807382 DOI: 10.1016/j.bja.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Circadian differences in the induction, maintenance, or emergence from volatile anaesthesia have not been well studied. METHODS The minimal alveolar concentration (MAC) for preventing movement in response to a painful stimulus, MAC for loss of righting reflex (MACLORR), and MAC for recovery of righting reflex (MACRORR) in C57BL/6J male mice with isoflurane or sevoflurane exposure were measured during either the light or dark phase. Time to onset of loss of righting reflex (TimeLORR) and recovery of righting reflex (TimeRORR) upon exposure to 1 MAC of isoflurane or sevoflurane were determined. EEG was also monitored in the light and dark phase under isoflurane or sevoflurane exposure. The noradrenergic toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was used to deplete noradrenergic neurones in the locus coeruleus to explore the impact of norepinephrine on these measurements. RESULTS MACLORR, TimeLORR, and MAC did not show light- or dark-phase-dependent variations for either isoflurane or sevoflurane exposure. However, MACRORR was higher and TimeRORR was shorter in the dark phase than in the light phase for both isoflurane and sevoflurane exposure. The EEG delta wave power was higher but theta wave power was lower in the light phase than that in the dark phase during the rest state and emergence of anaesthesia. These light- and dark-phase-dependent changes in emergence were abolished in DSP-4-treated mice. CONCLUSION Our data show that circadian differences exist during emergence but not during induction or maintenance of sevoflurane or isoflurane anaesthesia. The locus coeruleus noradrenergic system may contribute to these differences.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Huang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing (CIBR), No. 26 Science Park Road, ZGC Life Science Park, Changping District, Beijing, China
| | - Jiayan Li
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Zhang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi Wu
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daiqiang Liu
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Wei Mei
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Huang Y, Hu K, Green AL, Ma X, Gillies MJ, Wang S, Fitzgerald JJ, Pan Y, Martin S, Huang P, Zhan S, Li D, Tan H, Aziz TZ, Sun B. Dynamic changes in rhythmic and arrhythmic neural signatures in the subthalamic nucleus induced by anaesthesia and tracheal intubation. Br J Anaesth 2020; 125:67-76. [PMID: 32336475 DOI: 10.1016/j.bja.2020.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Subcortical structures, including the basal ganglia, have been proposed to be crucial for arousal, consciousness, and behavioural responsiveness. How the basal ganglia contribute to the loss and recovery of consciousness during anaesthesia has, however, not yet been well characterised. METHODS Twelve patients with advanced Parkinson's disease, who were undergoing deep brain stimulation (DBS) electrode implantation in the subthalamic nucleus (STN), were included in this study. Local field potentials (LFPs) were recorded from the DBS electrodes and EEG was recorded from the scalp during induction of general anaesthesia (with propofol and sufentanil) and during tracheal intubation. Neural signatures of loss of consciousness and of the expected arousal during intubation were sought in the STN and EEG recordings. RESULTS Propofol-sufentanil anaesthesia resulted in power increases in delta, theta, and alpha frequencies, and broadband power decreases in higher frequencies in both STN and frontal cortical areas. This was accompanied by increased STN-frontal cortical coherence only in the alpha frequency band (119 [68]%; P=0.0049). We observed temporal activity changes in STN after tracheal intubation, including power increases in high-beta (22-40 Hz) frequency (98 [123]%; P=0.0064) and changes in the power-law exponent in the power spectra at lower frequencies (2-80 Hz), which were not observed in the frontal cortex. During anaesthesia, the dynamic changes in the high-gamma power in STN LFPs correlated with the power-law exponent in the power spectra at lower frequencies (2-80 Hz). CONCLUSIONS Apart from similar activity changes in both STN and cortex associated with anaesthesia-induced unresponsiveness, we observed specific neuronal activity changes in the STN in response to the anaesthesia and tracheal intubation. We also show that the power-law exponent in the power spectra in the STN was modulated by tracheal intubation in anaesthesia. Our results support the hypothesis that subcortical nuclei may play an important role in the loss and return of responsiveness.
Collapse
Affiliation(s)
- Yongzhi Huang
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Kejia Hu
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xin Ma
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - James J Fitzgerald
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yixin Pan
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sean Martin
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peng Huang
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bomin Sun
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Sleigh J, Warnaby CE. Finding the starter motor for the engine of consciousness. Br J Anaesth 2019; 123:259-261. [PMID: 31256917 DOI: 10.1016/j.bja.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jamie Sleigh
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand.
| | - Catherine E Warnaby
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|