1
|
Zorumski CF, Covey DF, Izumi Y, Evers AS, Maguire JL, Mennerick SJ. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci Biobehav Rev 2025; 172:106119. [PMID: 40127877 DOI: 10.1016/j.neubiorev.2025.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
In recent years three neuroactive steroids (NAS), brexanolone (allopregnanolone, AlloP), ganaxolone and zuranolone, have been approved for the treatment of neuropsychiatric illnesses including postpartum depression and seizures in a neurodevelopmental syndrome. The approved agents are pregnane steroids and strong positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A receptors (GABAARs). Broad effects on GABAARs play important roles in therapeutic benefits. However, these NAS also have actions on non-GABAR targets that could be important for clinical outcomes. Thus, understanding the broader effects of NAS is potentially important for expanding the therapeutic landscape of these important modulators. The approved NAS as well as other structurally distinct NAS and oxysterols have effects on non-GABAAR receptors and ion channels, along with intracellular actions that could have therapeutic importance, including modulation of cellular stress mechanisms, neuroinflammation, mitochondrial function and autophagy, among others. In this review, we explore GABAergic and other cellular effects of pregnane steroids including novel molecules that have potential therapeutic importance. This work discusses the complex chemical nature of NAS and what is being learned at cellular, molecular, synaptic and brain network levels about key sites of action including GABAARs and other targets.
Collapse
Affiliation(s)
- Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Germann AL, Xu Y, Covey DF, Evers AS, Akk G. Comparison of Behavioral Effects of GABAergic Low- and High-Efficacy Neuroactive Steroids in the Zebrafish Larvae Assay. ACS Chem Neurosci 2024; 15:909-915. [PMID: 38386612 PMCID: PMC10953468 DOI: 10.1021/acschemneuro.3c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Activation of the GABAA receptor is associated with numerous behavioral end points ranging from anxiolysis to deep anesthesia. The specific behavioral effect of a GABAergic compound is considered to correlate with the degree of its functional effect on the receptor. Here, we tested the hypothesis that a low-efficacy allosteric potentiator of the GABAA receptor may act, due to a ceiling effect, as a sedative with reduced and limited action. We synthesized a derivative, named (3α,5β)-20-methyl-pregnane-3,20-diol (KK-235), of the GABAergic neurosteroid 5β-pregnane-3α,20α-diol. Using electrophysiology, we showed that KK-235 is a low-efficacy potentiator of the synaptic-type α1β2γ2L GABAA receptor. In the zebrafish larvae behavioral assay, KK-235 was found to only partially block the inverted photomotor response (PMR) and to weakly reduce swimming behavior, whereas the high-efficacy GABAergic steroid (3α,5α,17β)-3-hydroxyandrostane-17-carbonitrile (ACN) fully blocked PMR and spontaneous swimming. Coapplication of KK-235 reduced the potentiating effect of ACN in an electrophysiological assay and dampened its sedative effect in behavioral experiments. We propose that low-efficacy GABAergic potentiators may be useful as sedatives with limited action.
Collapse
Affiliation(s)
- Allison L. Germann
- Departments of Anesthesiology (ALG, ASE, GA) and Developmental Biology (YX, DFC), and the Taylor Family Institute for Innovative Psychiatric Research (DFC, ASE, GA), Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yuanjian Xu
- Departments of Anesthesiology (ALG, ASE, GA) and Developmental Biology (YX, DFC), and the Taylor Family Institute for Innovative Psychiatric Research (DFC, ASE, GA), Washington University School of Medicine, St Louis, MO 63110, USA
| | - Douglas F. Covey
- Departments of Anesthesiology (ALG, ASE, GA) and Developmental Biology (YX, DFC), and the Taylor Family Institute for Innovative Psychiatric Research (DFC, ASE, GA), Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alex S. Evers
- Departments of Anesthesiology (ALG, ASE, GA) and Developmental Biology (YX, DFC), and the Taylor Family Institute for Innovative Psychiatric Research (DFC, ASE, GA), Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gustav Akk
- Departments of Anesthesiology (ALG, ASE, GA) and Developmental Biology (YX, DFC), and the Taylor Family Institute for Innovative Psychiatric Research (DFC, ASE, GA), Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
4
|
Jevtovic-Todorovic V, Todorovic SM. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules 2023; 13:1654. [PMID: 38002336 PMCID: PMC10669813 DOI: 10.3390/biom13111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Published evidence over the past few decades suggests that general anesthetics could be neurotoxins especially when administered at the extremes of age. The reported pathology is not only at the morphological level when examined in very young and aged brains, given that, importantly, newly developing evidence suggests a variety of behavioral impairments. Since anesthesia is unavoidable in certain clinical settings, we should consider the development of new anesthetics. A promising and safe solution could be a new family of anesthetics referred to as neuroactive steroids. In this review, we summarize the currently available evidence regarding their anesthetic and analgesic properties.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | | |
Collapse
|
5
|
Fine-Raquet B, Manzella FM, Joksimovic SM, Dietz RM, Orfila JE, Sampath D, Tesic V, Atluri N, Covey DF, Raol YH, Jevtovic-Todorovic V, Herson PS, Todorovic SM. Neonatal exposure to a neuroactive steroid alters low-frequency oscillations in the subiculum. Exp Biol Med (Maywood) 2023; 248:578-587. [PMID: 37309730 PMCID: PMC10350800 DOI: 10.1177/15353702231177009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Preclinical studies have established that neonatal exposure to contemporary sedative/hypnotic drugs causes neurotoxicity in the developing rodent and primate brains. Our group recently reported that novel neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) induced effective hypnosis in both neonatal and adult rodents but did not cause significant neurotoxicity in vulnerable brain regions such as subiculum, an output region of hippocampal formation particularly sensitive to commonly used sedatives/hypnotics. Despite significant emphasis on patho-morphological changes, little is known about long-term effects on subicular neurophysiology after neonatal exposure to neuroactive steroids. Hence, we explored the lasting effects of neonatal exposure to 3β-OH on sleep macrostructure as well as subicular neuronal oscillations in vivo and synaptic plasticity ex vivo in adolescent rats. At postnatal day 7, we exposed rat pups to either 10 mg/kg of 3β-OH over a period of 12 h or to volume-matched cyclodextrin vehicle. At weaning age, a cohort of rats was implanted with a cortical electroencephalogram (EEG) and subicular depth electrodes. At postnatal day 30-33, we performed in vivo assessment of sleep macrostructure (divided into wake, non-rapid eye movement, and rapid eye movement sleep) and power spectra in cortex and subiculum. In a second cohort of 3β-OH exposed animals, we conducted ex vivo studies of long-term potentiation (LTP) in adolescent rats. Overall, we found that neonatal exposure to 3β-OH decreased subicular delta and sigma oscillations during non-rapid eye movement sleep without altering sleep macrostructure. Furthermore, we observed no significant changes in subicular synaptic plasticity. Interestingly, our previous study found that neonatal exposure to ketamine increased subicular gamma oscillations during non-rapid eye movement sleep and profoundly suppressed subicular LTP in adolescent rats. Together these results suggest that exposure to different sedative/hypnotic agents during a critical period of brain development may induce distinct functional changes in subiculum circuitry that may persist into adolescent age.
Collapse
Affiliation(s)
- Brier Fine-Raquet
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dayalan Sampath
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX 77843, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas F Covey
- Department of Developmental Biology, St. Louis School of Medicine, Washington University, St. Louis, MO 63130, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD 20824, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Manzella FM, Cabrera OH, Wilkey D, Fine-Raquet B, Klawitter J, Krishnan K, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Sex-specific hypnotic effects of the neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile are mediated by peripheral metabolism into an active hypnotic steroid. Br J Anaesth 2023; 130:154-164. [PMID: 36428160 PMCID: PMC10080470 DOI: 10.1016/j.bja.2022.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/01/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The novel synthetic neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) blocks T-type calcium channels but does not directly modulate neuronal γ-aminobutyric acid type A (GABAA) currents like other anaesthetic neurosteroids. As 3β-OH has sex-specific hypnotic effects in adult rats, we studied the mechanism contributing to sex differences in its effects. METHODS We used a combination of behavioural loss of righting reflex, neuroendocrine, pharmacokinetic, in vitro patch-clamp electrophysiology, and in vivo electrophysiological approaches in wild-type mice and in genetic knockouts of the CaV3.1 T-type calcium channel isoform to study the mechanisms by which 3β-OH and its metabolite produces sex-specific hypnotic effects. RESULTS Adult male mice were less sensitive to the hypnotic effects of 3β-OH compared with female mice, and these differences appeared during development. Adult males had higher 3β-OH brain concentrations despite being less sensitive to its hypnotic effects. Females metabolised 3β-OH into the active GABAA receptor positive allosteric modulator (3α,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3α-OH) to a greater extent than males. The 3α-OH metabolite has T-channel blocking properties with sex-specific hypnotic and pharmacokinetic effects. Sex-dependent suppression of the cortical electroencephalogram is more pronounced with 3α-OH compared with 3β-OH. CONCLUSIONS The sex-specific differences in the hypnotic effect of 3β-OH in mice are attributable to differences in its peripheral metabolism into the more potent hypnotic metabolite 3α-OH.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Omar H Cabrera
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Davis Wilkey
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brier Fine-Raquet
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jelena Klawitter
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Slobodan M Todorovic
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Lambert PM, Ni R, Benz A, Rensing NR, Wong M, Zorumski CF, Mennerick S. Non-sedative cortical EEG signatures of allopregnanolone and functional comparators. Neuropsychopharmacology 2023; 48:371-379. [PMID: 36168047 PMCID: PMC9751067 DOI: 10.1038/s41386-022-01450-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
Neurosteroids that positively modulate GABAA receptors are among a growing list of rapidly acting antidepressants, including ketamine and psychedelics. To develop increasingly specific treatments with fewer side effects, we explored the possibility of EEG signatures in mice, which could serve as a cross-species screening tool. There are few studies of the impact of non-sedative doses of rapid antidepressants on EEG in either rodents or humans. Here we hypothesize that EEG features may separate a rapid antidepressant neurosteroid, allopregnanolone, from other GABAA positive modulators, pentobarbital and diazepam. Further, we compared the actions GABA modulators with those of ketamine, an NMDA antagonist and prototype rapid antidepressant. We examined EEG spectra during active exploration at two cortical locations and examined cross-regional and cross-frequency interactions. We found that at comparable doses, the effects of allopregnanolone, despite purported selectivity for certain GABAAR subtypes, was indistinguishable from pentobarbital during active waking exploration. The actions of diazepam had recognizable common features with allopregnanolone and pentobarbital but was also distinct, consistent with subunit selectivity of benzodiazepines. Finally, ketamine exhibited no distinguishing overlap with allopregnanolone in the parameters examined. Our results suggest that rapid antidepressants with different molecular substrates may remain separated at the level of large-scale ensemble activity, but the studies leave open the possibility of commonalities in more discrete circuits and/or in the context of a dysfunctional brain.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA.,Medical Scientist Training Program, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Richard Ni
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Ann Benz
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Nicholas R Rensing
- Department of Neurology, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA. .,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660S. Euclid Ave., MSC 8134-0181-0G, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Joksimovic SL, Jevtovic-Todorovic V, Todorovic SM. The role of voltage-gated calcium channels in the mechanisms of anesthesia and perioperative analgesia. Curr Opin Anaesthesiol 2022; 35:436-441. [PMID: 35787588 PMCID: PMC9616208 DOI: 10.1097/aco.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW A family of neuronal voltage-gated calcium channels (VGCCs) have received only recently a significant consideration regarding the mechanisms of anesthesia because VGCC inhibition may be important in anesthetic action by decreasing neuronal excitability and presynaptic excitatory transmission. The T-type VGCCs channels (T-channels), although rarely involved in synaptic neurotransmitter release, play an important role in controlling neuronal excitability and in generating spontaneous oscillatory bursting of groups of neurons in the thalamus thought to be involved in regulating the state of arousal and sleep. Furthermore, these channels are important regulators of neuronal excitability in pain pathway. This review will provide an overview of historic perspective and the recent literature on the role of VGCCs and T-channel inhibition in particular in the mechanisms of action of anesthetics and analgesics. RECENT FINDINGS Recent research in the field of novel mechanisms of hypnotic action of anesthetics revealed significant contribution of the Ca V 3.1 isoform of T-channels expressed in the thalamus. Furthermore, perioperative analgesia can be achieved by targeting Ca V 3.2 isoform of these channels that is abundantly expressed in pain pathways. SUMMARY The review summarizes current knowledge regarding the contribution of T-channels in hypnosis and analgesia. Further preclinical and clinical studies are needed to validate their potential for developing novel anesthetics and new perioperative pain therapies.
Collapse
Affiliation(s)
- Sonja L. Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
10
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
11
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Manzella FM, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Synthetic neuroactive steroids as new sedatives and anaesthetics: Back to the future. J Neuroendocrinol 2022; 34:e13086. [PMID: 35014105 PMCID: PMC8866223 DOI: 10.1111/jne.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
Since the 1990s, there has been waning interest in researching general anaesthetics (anaesthetics). Although currently used anaesthetics are mostly safe and effective, they are not without fault. In paediatric populations and neonatal animal models, they are associated with learning impairments and neurotoxicity. In an effort to research safer anaesthetics, we have gone back to re-examine neuroactive steroids as anaesthetics. Neuroactive steroids are steroids that have direct, local effects in the central nervous system. Since the discovery of their anaesthetic effects, neuroactive steroids have been consistently used in human or veterinary clinics as preferred anaesthetic agents. Although briefly abandoned for clinical use due to unwanted vehicle side effects, there has since been renewed interest in their therapeutic value. Neuroactive steroids are safe sedative/hypnotic and anaesthetic agents across various animal species. Importantly, unlike traditional anaesthetics, they do not cause extensive neurotoxicity in the developing rodent brain. Similar to traditional anaesthetics, neuroactive steroids are modulators of synaptic and extrasynaptic γ-aminobutyric acid type A (GABAA ) receptors and their interactions at the GABAA receptor are stereo- and enantioselective. Recent work has also shown that these agents act on other ion channels, such as high- and low-voltage-activated calcium channels. Through these mechanisms of action, neuroactive steroids modulate neuronal excitability, which results in characteristic burst suppression of the electroencephalogram, and a surgical plane of anaesthesia. However, in addition to their interactions with voltage and ligand gated ions channels, neuroactive steroids interact with membrane bound metabotropic receptors and xenobiotic receptors to facilitate signaling of prosurvival, antiapoptotic pathways. These pathways play a role in their neuroprotective effects in neuronal injury and may also prevent extensive apoptosis in the developing brain during anaesthesia. The current review explores the history of neuroactive steroids as anaesthetics in humans and animal models, their diverse mechanisms of action, and their neuroprotective properties.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Timic Stamenic T, Manzella FM, Maksimovic S, Krishnan K, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Further Evidence that Inhibition of Neuronal Voltage-Gated Calcium Channels Contributes to the Hypnotic Effect of Neurosteroid Analogue, 3β-OH. Front Pharmacol 2022; 13:850658. [PMID: 35677453 PMCID: PMC9169093 DOI: 10.3389/fphar.2022.850658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
We recently reported that a neurosteroid analogue with T-channel-blocking properties (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH), induced hypnosis in rat pups without triggering neuronal apoptosis. Furthermore, we found that the inhibition of the CaV3.1 isoform of T-channels contributes to the hypnotic properties of 3β-OH in adult mice. However, the specific mechanisms underlying the role of other subtypes of voltage-gated calcium channels in thalamocortical excitability and oscillations in vivo during 3β-OH-induced hypnosis are largely unknown. Here, we used patch-clamp recordings from acute brain slices, in vivo electroencephalogram (EEG) recordings, and mouse genetics with wild-type (WT) and CaV2.3 knock-out (KO) mice to further investigate the molecular mechanisms of neurosteroid-induced hypnosis. Our voltage-clamp recordings showed that 3β-OH inhibited recombinant CaV2.3 currents. In subsequent current-clamp recordings in thalamic slices ex vivo, we found that selective CaV2.3 channel blocker (SNX-482) inhibited stimulated tonic firing and increased the threshold for rebound burst firing in WT animals. Additionally, in thalamic slices we found that 3β-OH inhibited spike-firing more profoundly in WT than in mutant mice. Furthermore, 3β-OH reduced bursting frequencies in WT but not mutant animals. In ensuing in vivo experiments, we found that intra-peritoneal injections of 3β-OH were less effective in inducing LORR in the mutant mice than in the WT mice, with expected sex differences. Furthermore, the reduction in total α, β, and low γ EEG power was more profound in WT than in CaV2.3 KO females over time, while at 60 min after injections of 3β-OH, the increase in relative β power was higher in mutant females. In addition, 3β-OH depressed EEG power more strongly in the male WT than in the mutant mice and significantly increased the relative δ power oscillations in WT male mice in comparison to the mutant male animals. Our results demonstrate for the first time the importance of the CaV2.3 subtype of voltage-gated calcium channels in thalamocortical excitability and the oscillations that underlie neurosteroid-induced hypnosis.
Collapse
Affiliation(s)
- Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
- Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, MO, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
- Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
14
|
Coulter I, Timic Stamenic T, Eggan P, Fine BR, Corrigan T, Covey DF, Yang L, Pan JQ, Todorovic SM. Different roles of T-type calcium channel isoforms in hypnosis induced by an endogenous neurosteroid epipregnanolone. Neuropharmacology 2021; 197:108739. [PMID: 34339750 PMCID: PMC8478885 DOI: 10.1016/j.neuropharm.2021.108739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroactive steroids induce sedation/hypnosis by potentiating γ-aminobutyric acid (GABAA) currents. However, we previously demonstrated that an endogenous neuroactive steroid epipregnanolone [(3β,5β)-3-hydroxypregnan-20-one] (EpiP) exerts potent peripheral analgesia and blocks T-type calcium currents while sparing GABAA currents in rat sensory neurons. This study seeks to investigate the behavioral effects elicited by systemic administration of EpiP and to characterize its use as an adjuvant agent to commonly used general anesthetics (GAs). METHODS Here, we utilized electroencephalographic (EEG) recordings to characterize thalamocortical oscillations, as well as behavioral assessment and mouse genetics with wild-type (WT) and different knockout (KO) models of T-channel isoforms to investigate potential sedative/hypnotic and immobilizing properties of EpiP. RESULTS Consistent with increased oscillations in slower EEG frequencies, EpiP induced an hypnotic state in WT mice when injected alone intra-peritoneally (i.p.) and effectively facilitated anesthetic effects of isoflurane (ISO) and sevoflurane (SEVO). The CaV3.1 (Cacna1g) KO mice demonstrated decreased sensitivity to EpiP-induced hypnosis when compared to WT mice, whereas no significant difference was noted between CaV3.2 (Cacna1h), CaV3.3 (Cacna1i) and WT mice. Finally, when compared to WT mice, onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice but not in CaV3.1 and CaV3.3 KO mice. CONCLUSION We posit that EpiP may have an important role as novel hypnotic and/or adjuvant to volatile anesthetic agents. We speculate that distinct hypnotic effects of EpiP across all three T-channel isoforms is due to their differential expression in thalamocortical circuitry.
Collapse
Affiliation(s)
- Ian Coulter
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Pierce Eggan
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Brier R. Fine
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Timothy Corrigan
- Department of Pediatrics, Division of Neurology,
Translational Epilepsy Research Program, University of Colorado, Anschutz Medical
Campus, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University
School of Medicine, St. Louis, MO 63110, USA;,Taylor Family Institute for Innovative Psychiatric
Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045;,Neuroscience, University of Colorado, Anschutz Medical
Campus, Aurora 80045;,Pharmacology Graduate Programs, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| |
Collapse
|
15
|
Joksimovic SM, Sampath D, Krishnan K, Covey DF, Jevtovic-Todorovic V, Raol YH, Todorovic SM. Differential effects of the novel neurosteroid hypnotic (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile on electroencephalogram activity in male and female rats. Br J Anaesth 2021; 127:435-446. [PMID: 33972091 PMCID: PMC8451239 DOI: 10.1016/j.bja.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We recently showed that a neurosteroid analogue, (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH), induced hypnosis in rats. The aim of the present study was to evaluate the hypnotic and anaesthetic potential of 3β-OH further using electroencephalography. METHODS We used behavioural assessment and cortical electroencephalogram (EEG) spectral power analysis to examine hypnotic and anaesthetic effects of 3β-OH (30 and 60 mg kg-1) administered intraperitoneally or intravenously to young adult male and female rats. RESULTS We found dose-dependent sex differences in 3β-OH-induced hypnosis and EEG changes. Both male and female rats responded similarly to i.p. 3β-OH 30 mg kg-1. However, at the higher dose (60 mg kg-1, i.p.), female rats had two-fold longer duration of spontaneous immobility than male rats (203.4 [61.6] min vs 101.3 [32.1] min), and their EEG was suppressed in the low-frequency range (2-6 Hz), in contrast to male rats. Although a sex-dependent hypnotic effect was not confirmed after 30 mg kg-1 i.v., female rats appeared more sensitive to 3β-OH with relatively small changes within delta (1-4 Hz) and alpha (8-13 Hz) bands. Finally, 3β-OH had a rapid onset of action and potent hypnotic/anaesthetic effect after 60 mg kg-1 i.v. in rats of both sexes; however, all female rats and only half of the male rats reached burst suppression, an EEG pattern usually associated with profound inhibition of thalamocortical networks. CONCLUSIONS Based on its behavioural effects and EEG signature, 3β-OH is a potent hypnotic in rats, with female rats being more sensitive than male rats.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Dayalan Sampath
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System, College Station, TX, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Moody OA, Vincent KF, Solt K. Sex, drugs, and anaesthesia research. Br J Anaesth 2021; 127:340-343. [PMID: 34330415 DOI: 10.1016/j.bja.2021.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
In this issue of the British Journal of Anaesthesia, Joksimovic and colleagues report significant sex differences in sensitivity to the behavioural and neurophysiological effects of 3β-OH, a novel neurosteroid anesthetic. Female rats were more sensitive to the effects of 3β-OH than male rats, although the mechanims remain unclear. Sex differences have been understudied in anaesthesia research, and this article by Joksimovic and colleagues emphasizes the need to devote more effort to understanding these differences.
Collapse
Affiliation(s)
- Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Global genetic deletion of Ca V3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Sci Rep 2020; 10:21510. [PMID: 33299036 PMCID: PMC7725806 DOI: 10.1038/s41598-020-78488-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023] Open
Abstract
We previously documented that the CaV3.3 isoform of T-type calcium channels (T-channels) is inhibited by clinically relevant concentrations of volatile anaesthetics, including isoflurane. However, little is understood about the functional role of CaV3.3 channels in anaesthetic-induced hypnosis and underlying neuronal oscillations. To address this issue, we used CaV3.3 knock-out (KO) mice and a panselective T-channel blocker 3,5-dichloro-N-[1-(2,2-dimethyltetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2). We found that mutant mice injected with the vehicle showed faster induction of hypnosis than wild-type (WT) mice, while the percent isoflurane at which hypnosis and immobility occurred was not different between two genotypes. Furthermore, we found that TTA-P2 facilitated isoflurane induction of hypnosis in the CaV3.3 KO mice more robustly than in the WT mice. Isoflurane-induced hypnosis following injections of TTA-P2 was accompanied with more prominent delta and theta EEG oscillations in the mutant mice, and reached burst-suppression pattern earlier when compared to the WT mice. Our findings point to a relatively specific value of CaV3.3 channels in anaesthetic induced hypnosis. Furthermore, we propose that T-channel blockers may be further explored as a valuable adjunct to reducing the usage of potent volatile anaesthetics, thereby improving their safety.
Collapse
|
18
|
Evers AS. Anaesthetic-induced developmental neurotoxicity on (neuro)steroids. Br J Anaesth 2020; 126:34-37. [PMID: 32891411 DOI: 10.1016/j.bja.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|