1
|
Kafashan M, Lebovitz L, Greenspan R, Zhao S, Kim T, Husain M, Hershey T, Cristancho P, Hogan RE, Palanca BJA, Farber NB, DNS-ECT Study Team. Investigating the impact of electroconvulsive therapy on brain networks and sleep: an observational study protocol. BMJ Open 2025; 15:e098859. [PMID: 40054874 PMCID: PMC11891538 DOI: 10.1136/bmjopen-2025-098859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 03/12/2025] Open
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) is a highly effective treatment for refractory depression, but it may also cause cognitive side effects. Despite decades of use, the mechanisms by which ECT exerts both its antidepressant and cognitive effects are still poorly understood, with the latter substantially limiting referral and adherence to therapy. ECT induces changes in correlated neural activity-functional connectivity-across various brain networks, which may underlie both its clinical efficacy and associated cognitive side effects. Electroencephalography (EEG) could address these knowledge gaps by identifying biomarkers that predict therapeutic outcomes or cognitive side effects. Such developments could ultimately improve patient selection and adherence. Such markers likely span large-scale functional brain networks or temporal dynamics of brain activity during sleep. We hypothesise that enhancement in slow wave sleep mediates the relationship between antidepressant effects and changes in functional connectivity throughout the course of ECT. METHODS AND ANALYSIS Disruptions of Brain Networks and Sleep by Electroconvulsive Therapy (DNS-ECT) is an ongoing observational study investigating the impact of ECT on large-scale brain functional networks and their relationships to sleep slow waves, an EEG marker linked to synaptic plasticity. The novelty of this study stems from our focus on the assessment of EEG markers during sleep, wakefulness and ECT-induced seizures over the course of therapy. Graph-based network analyses of high-density EEG signals allow characterisation of functional networks locally in specific subnetworks and globally over large-scale functional networks. Longitudinal assessments of EEG alongside clinical and cognitive outcomes provide a unique opportunity to improve our understanding of the circuit mechanisms underlying the development of cognitive impairments and antidepressant effects incurred during ECT. ETHICS AND DISSEMINATION Recruitment for this 5-year study started in March 2023. Dissemination plans include presentations at scientific conferences and peer-reviewed publications. This study has been registered with ClinicalTrials.gov registry under identifier. TRIAL REGISTRATION NUMBER NCT05905705.
Collapse
Affiliation(s)
- MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Lucas Lebovitz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Robby Greenspan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Tae Kim
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England, UK
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St. Louis, Missouri, USA
| | - Pilar Cristancho
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Ben Julian Agustin Palanca
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | | |
Collapse
Collaborators
Michael Green, Alyssa K Labonte, Subha Subramanian, Orlandrea Hyche, Allyson Quigley, Elliott Kraenzle, Logan Griffin, Aris Perez, Paul Kang, Aditya Sehgal, Julie Schweiger,
Collapse
|
2
|
de Gans CJ, Burger P, van den Ende ES, Hermanides J, Nanayakkara PWB, Gemke RJBJ, Rutters F, Stenvers DJ. Sleep assessment using EEG-based wearables - A systematic review. Sleep Med Rev 2024; 76:101951. [PMID: 38754209 DOI: 10.1016/j.smrv.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Polysomnography (PSG) is the reference standard of sleep measurement, but is burdensome for the participant and labor intensive. Affordable electroencephalography (EEG)-based wearables are easy to use and are gaining popularity, yet selecting the most suitable device is a challenge for clinicians and researchers. In this systematic review, we aim to provide a comprehensive overview of available EEG-based wearables to measure human sleep. For each wearable, an overview will be provided regarding validated population and reported measurement properties. A systematic search was conducted in the databases OVID MEDLINE, Embase.com and CINAHL. A machine learning algorithm (ASReview) was utilized to screen titles and abstracts for eligibility. In total, 60 papers were selected, covering 34 unique EEG-based wearables. Feasibility studies indicated good tolerance, high compliance, and success rates. The 42 included validation studies were conducted across diverse populations and showed consistently high accuracy in sleep staging detection. Therefore, the recent advancements in EEG-based wearables show great promise as alternative for PSG and for at-home sleep monitoring. Users should consider factors like user-friendliness, comfort, and costs, as these devices vary in features and pricing, impacting their suitability for individual needs.
Collapse
Affiliation(s)
- C J de Gans
- Department of Internal Medicine, Section General Internal Medicine Unit Acute Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - P Burger
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - E S van den Ende
- Department of Internal Medicine, Section General Internal Medicine Unit Acute Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - J Hermanides
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anesthesiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - P W B Nanayakkara
- Department of Internal Medicine, Section General Internal Medicine Unit Acute Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R J B J Gemke
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - F Rutters
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Epidemiology and Data Science, Amsterdam University Medical Center, the Netherlands
| | - D J Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Department Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
| |
Collapse
|
3
|
Kafashan M, Gupte G, Kang P, Hyche O, Luong AH, Prateek GV, Ju YES, Palanca BJA. A personalized semi-automatic sleep spindle detection (PSASD) framework. J Neurosci Methods 2024; 407:110064. [PMID: 38301832 PMCID: PMC11219251 DOI: 10.1016/j.jneumeth.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Sleep spindles are distinct electroencephalogram (EEG) patterns of brain activity that have been posited to play a critical role in development, learning, and neurological disorders. Manual scoring for sleep spindles is labor-intensive and tedious but could supplement automated algorithms to resolve challenges posed with either approaches alone. NEW METHODS A Personalized Semi-Automatic Sleep Spindle Detection (PSASD) framework was developed to combine the strength of automated detection algorithms and visual expertise of human scorers. The underlying model in the PSASD framework assumes a generative model for EEG sleep spindles as oscillatory components, optimized to EEG amplitude, with remaining signals distributed into transient and low-frequency components. RESULTS A single graphical user interface (GUI) allows both manual scoring of sleep spindles (model training data) and verification of automatically detected spindles. A grid search approach allows optimization of parameters to balance tradeoffs between precision and recall measures. COMPARISON WITH EXISTING METHODS PSASD outperformed DETOKS in F1-score by 19% and 4% on the DREAMS and P-DROWS-E datasets, respectively. It also outperformed YASA in F1-score by 25% in the P-DROWS-E dataset. Further benchmarking analysis showed that PSASD outperformed four additional widely used sleep spindle detectors in F1-score in the P-DROWS-E dataset. Titration analysis revealed that four 30-second epochs are sufficient to fine-tune the model parameters of PSASD. Associations of frequency, duration, and amplitude of detected sleep spindles matched those previously reported with automated approaches. CONCLUSIONS Overall, PSASD improves detection of sleep spindles in EEG data acquired from both younger healthy and older adult patient populations.
Collapse
Affiliation(s)
- MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA.
| | - Gaurang Gupte
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Paul Kang
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Orlandrea Hyche
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Anhthi H Luong
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Yo-El S Ju
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA; Department of Neurology, Division of Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ben Julian A Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Smith SK, Kafashan M, Rios RL, Brown EN, Landsness EC, Guay CS, Palanca BJA. Daytime dexmedetomidine sedation with closed-loop acoustic stimulation alters slow wave sleep homeostasis in healthy adults. BJA OPEN 2024; 10:100276. [PMID: 38571816 PMCID: PMC10990715 DOI: 10.1016/j.bjao.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Background The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration ClinicalTrials.gov NCT04206059.
Collapse
Affiliation(s)
- S. Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel L. Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C. Landsness
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Division of Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christian S. Guay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ben Julian A. Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Rios RL, Green M, Smith SK, Kafashan M, Ching S, Farber NB, Lin N, Lucey BP, Reynolds CF, Lenze EJ, Palanca BJA. Propofol enhancement of slow wave sleep to target the nexus of geriatric depression and cognitive dysfunction: protocol for a phase I open label trial. BMJ Open 2024; 14:e087516. [PMID: 38816055 PMCID: PMC11138309 DOI: 10.1136/bmjopen-2024-087516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Late-life treatment-resistant depression (LL-TRD) is common and increases risk for accelerated ageing and cognitive decline. Impaired sleep is common in LL-TRD and is a risk factor for cognitive decline. Slow wave sleep (SWS) has been implicated in key processes including synaptic plasticity and memory. A deficiency in SWS may be a core component of depression pathophysiology. The anaesthetic propofol can induce electroencephalographic (EEG) slow waves that resemble SWS. Propofol may enhance SWS and oral antidepressant therapy, but relationships are unclear. We hypothesise that propofol infusions will enhance SWS and improve depression in older adults with LL-TRD. This hypothesis has been supported by a recent small case series. METHODS AND ANALYSIS SWIPED (Slow Wave Induction by Propofol to Eliminate Depression) phase I is an ongoing open-label, single-arm trial that assesses the safety and feasibility of using propofol to enhance SWS in older adults with LL-TRD. The study is enrolling 15 English-speaking adults over age 60 with LL-TRD. Participants will receive two propofol infusions 2-6 days apart. Propofol infusions are individually titrated to maximise the expression of EEG slow waves. Preinfusion and postinfusion sleep architecture are evaluated through at-home overnight EEG recordings acquired using a wireless headband equipped with dry electrodes. Sleep EEG recordings are scored manually. Key EEG measures include sleep slow wave activity, SWS duration and delta sleep ratio. Longitudinal changes in depression, suicidality and anhedonia are assessed. Assessments are performed prior to the first infusion and up to 10 weeks after the second infusion. Cognitive ability is assessed at enrolment and approximately 3 weeks after the second infusion. ETHICS AND DISSEMINATION The study was approved by the Washington University Human Research Protection Office. Recruitment began in November 2022. Dissemination plans include presentations at scientific conferences, peer-reviewed publications and mass media. Positive results will lead to a larger phase II randomised placebo-controlled trial. TRIAL REGISTRATION NUMBER NCT04680910.
Collapse
Affiliation(s)
- Rachel Lynn Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Michael Green
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - S Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - ShiNung Ching
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St Louis, Missouri, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Nan Lin
- Department of Biostatistics and Data Science, Washington University in St Louis, St Louis, Missouri, USA
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric J Lenze
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Ben Julian Agustin Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Haller HC, Moore SL, Green KK, Johnson RL, Sammel MD, Epperson CN, Novick AM. Harnessing technology to improve sleep in frontline healthcare workers: A pilot study of electronic noise-masking earbuds on subjective and objective sleep measures. Sci Prog 2024; 107:368504241242276. [PMID: 38614463 PMCID: PMC11016237 DOI: 10.1177/00368504241242276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Objective: This pilot study assessed the effects of electronic noise-masking earbuds on subjective sleep perception and objective sleep parameters among healthcare workers (HCWs) reporting sleep difficulties during the COVID-19 pandemic. Methods: Using a pre-post design, 77 HCWs underwent 3 nights of baseline assessment followed by a 7-night intervention period. Participants wore an at-home sleep monitoring headband to assess objective sleep measures and completed subjective self-report assessments. The difference in mean sleep measures from baseline to intervention was estimated in linear mixed models. Results: Compared to baseline assessments, HCWs reported significant improvements in sleep quality as measured by the Insomnia Severity Index (ISI) (Cohen's d = 1.74, p < 0.001) and a significant reduction in perceived sleep onset latency (SOL) during the intervention (M = 17.2 minutes, SD = 7.7) compared to baseline (M = 24.7 minutes, SD = 16.1), (Cohen's d = -0.42, p = 0.001). There were no significant changes in objective SOL (p = 0.703). However, there was a significant interaction between baseline objective SOL (<20 minutes vs >20 minutes) and condition (baseline vs intervention) (p = 0.002), such that individuals with objective SOL >20 minutes experienced a significant decrease in objective SOL during the intervention period compared to baseline (p = 0.015). Conclusions: HCWs experienced a significant improvement in perceived SOL and ISI scores after using the electronic noise-masking earbuds. Our data provide preliminary evidence for a nonpharmacological intervention to improve the sleep quality of HCWs which should be confirmed by future controlled studies.
Collapse
Affiliation(s)
- Heinrich C Haller
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Susan L Moore
- Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine K Green
- Department of Otolaryngology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel L Johnson
- Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Mary D Sammel
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Mohamed M, Mohamed N, Kim JG. Advancements in Wearable EEG Technology for Improved Home-Based Sleep Monitoring and Assessment: A Review. BIOSENSORS 2023; 13:1019. [PMID: 38131779 PMCID: PMC10741861 DOI: 10.3390/bios13121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Sleep is a fundamental aspect of daily life, profoundly impacting mental and emotional well-being. Optimal sleep quality is vital for overall health and quality of life, yet many individuals struggle with sleep-related difficulties. In the past, polysomnography (PSG) has served as the gold standard for assessing sleep, but its bulky nature, cost, and the need for expertise has made it cumbersome for widespread use. By recognizing the need for a more accessible and user-friendly approach, wearable home monitoring systems have emerged. EEG technology plays a pivotal role in sleep monitoring, as it captures crucial brain activity data during sleep and serves as a primary indicator of sleep stages and disorders. This review provides an overview of the most recent advancements in wearable sleep monitoring leveraging EEG technology. We summarize the latest EEG devices and systems available in the scientific literature, highlighting their design, form factors, materials, and methods of sleep assessment. By exploring these developments, we aim to offer insights into cutting-edge technologies, shedding light on wearable EEG sensors for advanced at-home sleep monitoring and assessment. This comprehensive review contributes to a broader perspective on enhancing sleep quality and overall health using wearable EEG sensors.
Collapse
Affiliation(s)
| | | | - Jae Gwan Kim
- Biomedical Science and Engineering Department, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.M.); (N.M.)
| |
Collapse
|
8
|
Lersch F, Correia PC, Hight D, Kaiser HA, Berger-Estilita J. The nuts and bolts of multimodal anaesthesia in the 21st century: a primer for clinicians. Curr Opin Anaesthesiol 2023; 36:666-675. [PMID: 37724595 PMCID: PMC10621648 DOI: 10.1097/aco.0000000000001308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
PURPOSE OF REVIEW This review article explores the application of multimodal anaesthesia in general anaesthesia, particularly in conjunction with locoregional anaesthesia, specifically focusing on the importance of EEG monitoring. We provide an evidence-based guide for implementing multimodal anaesthesia, encompassing drug combinations, dosages, and EEG monitoring techniques, to ensure reliable intraoperative anaesthesia while minimizing adverse effects and improving patient outcomes. RECENT FINDINGS Opioid-free and multimodal general anaesthesia have significantly reduced opioid addiction and chronic postoperative pain. However, the evidence supporting the effectiveness of these approaches is limited. This review attempts to integrate research from broader neuroscientific fields to generate new clinical hypotheses. It discusses the correlation between high-dose intraoperative opioids and increased postoperative opioid consumption and their impact on pain indices and readmission rates. Additionally, it explores the relationship between multimodal anaesthesia and pain processing models and investigates the potential effects of nonpharmacological interventions on preoperative anxiety and postoperative pain. SUMMARY The integration of EEG monitoring is crucial for guiding adequate multimodal anaesthesia and preventing excessive anaesthesia dosing. Furthermore, the review investigates the impact of combining regional and opioid-sparing general anaesthesia on perioperative EEG readings and anaesthetic depth. The findings have significant implications for clinical practice in optimizing multimodal anaesthesia techniques (Supplementary Digital Content 1: Video Abstract, http://links.lww.com/COAN/A96 ).
Collapse
Affiliation(s)
- Friedrich Lersch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Paula Cruz Correia
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Darren Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Heiko A. Kaiser
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern
- Centre for Anaesthesiology and Intensive Care, Hirslanden Klink Aarau, Hirslanden Medical Group, Schaenisweg, Aarau
| | - Joana Berger-Estilita
- Institute of Anesthesiology and Intensive Care, Salemspital, Hirslanden Medical Group
- Institute for Medical Education, University of Bern, Bern, Switzerland
- CINTESIS@RISE, Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Kim J, Park S, Kim KN, Ha Y, Shin SJ, Cha W, Lee KY, Choi J, Koo BN. Resting-state prefrontal EEG biomarker in correlation with postoperative delirium in elderly patients. Front Aging Neurosci 2023; 15:1224264. [PMID: 37818480 PMCID: PMC10561289 DOI: 10.3389/fnagi.2023.1224264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged >70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive status™ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27-0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD.
Collapse
Affiliation(s)
- Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujung Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Keung-Nyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang-Jun Shin
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonseok Cha
- Human Anti-Aging Standards Research Institute, Gyeongsangnam-Do, Republic of Korea
| | - Ki-young Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungmi Choi
- Human Anti-Aging Standards Research Institute, Gyeongsangnam-Do, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Rios RL, Kafashan M, Hyche O, Lenard E, Lucey BP, Lenze EJ, Palanca BJA. Targeting Slow Wave Sleep Deficiency in Late-Life Depression: A Case Series With Propofol. Am J Geriatr Psychiatry 2023; 31:643-652. [PMID: 37105885 PMCID: PMC10544727 DOI: 10.1016/j.jagp.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Slow wave sleep (SWS), characterized by large electroencephalographic oscillations, facilitates crucial physiologic processes that maintain synaptic plasticity and overall brain health. Deficiency in older adults is associated with depression and cognitive dysfunction, such that enhancing sleep slow waves has emerged as a promising target for novel therapies. Enhancement of SWS has been noted after infusions of propofol, a commonly used anesthetic that induces electroencephalographic patterns resembling non-rapid eye movement sleep. This paper 1) reviews the scientific premise underlying the hypothesis that sleep slow waves are a novel therapeutic target for improving cognitive and psychiatric outcomes in older adults, and 2) presents a case series of two patients with late-life depression who each received two propofol infusions. One participant, a 71-year-old woman, had a mean of 2.8 minutes of evening SWS prior to infusions (0.7% of total sleep time). SWS increased on the night after each infusion, to 12.5 minutes (5.3% of total sleep time) and 24 minutes (10.6% of total sleep time), respectively. Her depression symptoms improved, reflected by a reduction in her Montgomery-Asberg Depression Rating Scale (MADRS) score from 26 to 7. In contrast, the other participant, a 77-year-old man, exhibited no SWS at baseline and only modest enhancement after the second infusion (3 minutes, 1.3% of total sleep time). His MADRS score increased from 13 to 19, indicating a lack of improvement in his depression. These cases provide proof-of-concept that propofol can enhance SWS and improve depression for some individuals, motivating an ongoing clinical trial (ClinicalTrials.gov NCT04680910).
Collapse
Affiliation(s)
- Rachel L Rios
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - MohammadMehdi Kafashan
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Orlandrea Hyche
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Emily Lenard
- Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Neurology (BPL), Washington University in St. Louis, MO
| | - Eric J Lenze
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ben Julian A Palanca
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Biomedical Engineering (BJAP), Washington University in St. Louis, St. Louis, MO; Division of Biology and Biomedical Sciences (BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO.
| |
Collapse
|
11
|
Bonato J, Curreli S, Romanzi S, Panzeri S, Fellin T. ASTRA: a deep learning algorithm for fast semantic segmentation of large-scale astrocytic networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539211. [PMID: 37205519 PMCID: PMC10187152 DOI: 10.1101/2023.05.03.539211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy, occur in anatomically restricted subcellular regions, and are coordinated across astrocytic networks. However, current analytical tools to identify the astrocytic subcellular regions where calcium signals occur are time-consuming and extensively rely on user-defined parameters. These limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining deep learning with image feature engineering for fast and fully automated semantic segmentation of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon microscopy datasets and found that ASTRA performed rapid detection and segmentation of astrocytic cell somata and processes with performance close to that of human experts, outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data, and generalized across indicators and acquisition parameters. We also applied ASTRA to the first report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic morphology and function.
Collapse
Affiliation(s)
- Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna; 40126 Bologna, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Sebastiano Curreli
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| | - Sara Romanzi
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- University of Genova; 16126 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia; 16163 Genova, Italy
| |
Collapse
|
12
|
Touchard C, Guimard P, Guessous K, Aubin OS, Levé C, Joachim J, Elayeb K, Mebazaa A, Gayat É, Mateo J, Vallée F, Cartailler J. Association of sleep and anaesthesia EEG biomarkers with preoperative MoCA score: A pilot study. Acta Anaesthesiol Scand 2023. [PMID: 37096645 DOI: 10.1111/aas.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Preoperative cognitive impairments increase the risk of postoperative complications. The electroencephalogram (EEG) could provide information on cognitive vulnerability. The feasibility and clinical relevance of sleep EEG (EEGsleep ) compared to intraoperative EEG (EEGintraop ) in cognitive risk stratification remains to be explored. We investigated similarities between EEGsleep and EEGintraop vis-a-vis preoperative cognitive impairments. METHODS Pilot study including 27 patients (63 year old [53.5, 70.0]) to whom Montreal cognitive assessment (MoCA) and EEGsleep were administered 1 day before a propofol-based general anaesthesia, in addition to EEGintraop acquisition from depth-of-anaesthesia monitors. Sleep spindles on EEGsleep and intraoperative alpha-band power on EEGintraop were particularly explored. RESULTS In total, 11 (41%) patients had a MoCA <25 points. These patients had a significantly lower sleep spindle power on EEGsleep (25 vs. 40 μv2 /Hz, p = .035) and had a weaker intraoperative alpha-band power on EEGintraop (85 vs. 150 μv2 /Hz, p = .001) compared to patients with normal MoCA. Correlation between sleep spindle and intraoperative alpha-band power was positive and significant (r = 0.544, p = .003). CONCLUSION Preoperative cognitive impairment appears to be detectable by both EEGsleep and EEGintraop . Preoperative sleep EEG to assess perioperative cognitive risk is feasible but more data are needed to demonstrate its benefit compared to intraoperative EEG.
Collapse
Affiliation(s)
- Cyril Touchard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Pauline Guimard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Karim Guessous
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Sorbonne Université, Paris, France
| | - Oriane Saint Aubin
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Charlotte Levé
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Jona Joachim
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Kenza Elayeb
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Étienne Gayat
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Joaquim Mateo
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Fabrice Vallée
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
- Université Paris-Saclay, Palaiseau, France
| | - Jérôme Cartailler
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| |
Collapse
|
13
|
Guay CS, Kafashan M, Huels ER, Jiang Y, Beyoglu B, Spencer JW, Geczi K, Apakama G, Ju YES, Wildes TS, Avidan MS, Palanca BJA. Postoperative Delirium Severity and Recovery Correlate With Electroencephalogram Spectral Features. Anesth Analg 2023; 136:140-151. [PMID: 36130079 PMCID: PMC9653519 DOI: 10.1213/ane.0000000000006075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Delirium is an acute syndrome characterized by inattention, disorganized thinking, and an altered level of consciousness. A reliable biomarker for tracking delirium does not exist, but oscillations in the electroencephalogram (EEG) could address this need. We evaluated whether the frequencies of EEG oscillations are associated with delirium onset, severity, and recovery in the postoperative period. METHODS Twenty-six adults enrolled in the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES; ClinicalTrials.gov NCT02241655) study underwent major surgery requiring general anesthesia, and provided longitudinal postoperative EEG recordings for this prespecified substudy. The presence and severity of delirium were evaluated with the confusion assessment method (CAM) or the CAM-intensive care unit. EEG data obtained during awake eyes-open and eyes-closed states yielded relative power in the delta (1-4 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. Discriminability for delirium presence was evaluated with c-statistics. To account for correlation among repeated measures within patients, mixed-effects models were generated to assess relationships between: (1) delirium severity and EEG relative power (ordinal), and (2) EEG relative power and time (linear). Slopes of ordinal and linear mixed-effects models are reported as the change in delirium severity score/change in EEG relative power, and the change in EEG relative power/time (days), respectively. Bonferroni correction was applied to confidence intervals (CIs) to account for multiple comparisons. RESULTS Occipital alpha relative power during eyes-closed states offered moderate discriminability (c-statistic, 0.75; 98% CI, 0.58-0.87), varying inversely with delirium severity (slope, -0.67; 98% CI, -1.36 to -0.01; P = .01) and with severity of inattention (slope, -1.44; 98% CI, -2.30 to -0.58; P = .002). Occipital theta relative power during eyes-open states correlated directly with severity of delirium (slope, 1.28; 98% CI, 0.12-2.44; P = .007), inattention (slope, 2.00; 98% CI, 0.48-3.54; P = .01), and disorganized thinking (slope, 3.15; 98% CI, 0.66-5.65; P = .01). Corresponding frontal EEG measures recapitulated these relationships to varying degrees. Severity of altered level of consciousness correlated with frontal theta relative power during eyes-open states (slope, 11.52; 98% CI, 6.33-16.71; P < .001). Frontal theta relative power during eyes-open states correlated inversely with time (slope, -0.05; 98% CI, -0.12 to -0.04; P = .002). CONCLUSIONS Presence, severity, and core features of postoperative delirium covary with spectral features of the EEG. The cost and accessibility of EEG facilitate the translation of these findings to future mechanistic and interventional trials.
Collapse
Affiliation(s)
- Christian S Guay
- From the Department of Anesthesiology
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - MohammadMehdi Kafashan
- From the Department of Anesthesiology
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Emma R Huels
- Neuroscience Graduate Program
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | | | - Bora Beyoglu
- Baylor Scott and White Research Institute, Plano, Texas
| | | | - Kristin Geczi
- From the Department of Anesthesiology
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Yo-El S Ju
- From the Department of Anesthesiology
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Neurology
- Hope Center for Neurological Disorders
| | | | - Michael S Avidan
- From the Department of Anesthesiology
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Psychiatry
| | - Ben Julian A Palanca
- Department of Psychiatry
- Division of Biology and Biomedical Sciences
- Department of Biomedical Engineering; Washington University School of Medicine in St Louis, St Louis, Missouri
| |
Collapse
|
14
|
Subramanian S, Labonte AK, Nguyen T, Luong AH, Hyche O, Smith SK, Hogan RE, Farber NB, Palanca BJA, Kafashan M. Correlating electroconvulsive therapy response to electroencephalographic markers: Study protocol. Front Psychiatry 2022; 13:996733. [PMID: 36405897 PMCID: PMC9670172 DOI: 10.3389/fpsyt.2022.996733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Electroconvulsive therapy (ECT) is an effective intervention for patients with major depressive disorder (MDD). Despite longstanding use, the underlying mechanisms of ECT are unknown, and there are no objective prognostic biomarkers that are routinely used for ECT response. Two electroencephalographic (EEG) markers, sleep slow waves and sleep spindles, could address these needs. Both sleep microstructure EEG markers are associated with synaptic plasticity, implicated in memory consolidation, and have reduced expression in depressed individuals. We hypothesize that ECT alleviates depression through enhanced expression of sleep slow waves and sleep spindles, thereby facilitating synaptic reconfiguration in pathologic neural circuits. Methods Correlating ECT Response to EEG Markers (CET-REM) is a single-center, prospective, observational investigation. Wireless wearable headbands with dry EEG electrodes will be utilized for at-home unattended sleep studies to allow calculation of quantitative measures of sleep slow waves (EEG SWA, 0.5-4 Hz power) and sleep spindles (density in number/minute). High-density EEG data will be acquired during ECT to quantify seizure markers. Discussion This innovative study focuses on the longitudinal relationships of sleep microstructure and ECT seizure markers over the treatment course. We anticipate that the results from this study will improve our understanding of ECT.
Collapse
Affiliation(s)
- Subha Subramanian
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Alyssa K. Labonte
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Neuroscience Graduate Program, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Thomas Nguyen
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anhthi H. Luong
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Health Policy and Management, Columbia University, New York, NY, United States
| | - Orlandrea Hyche
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - S. Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, MO, United States
| | - R. Edward Hogan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Nuri B. Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ben Julian A. Palanca
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, MO, United States
| |
Collapse
|