1
|
Tan Y, Wang J, He Y, Yu X, Chen S, Penttinen P, Liu S, Yang Y, Zhao K, Zou L. Organic Fertilizers Shape Soil Microbial Communities and Increase Soil Amino Acid Metabolites Content in a Blueberry Orchard. MICROBIAL ECOLOGY 2023; 85:232-246. [PMID: 35064809 DOI: 10.1007/s00248-022-01960-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The decline in soil nutrients is becoming a major concern of soil degradation. The possibility of using organic waste as a soil additive to increase nutrients and essential components is significant in soil quality protection and waste management. The aim of this study was to investigate the effects of composted spent mushroom substrate (MS), giant panda feces (PF), and cattle manure (CM) as organic fertilizers in soil microbial communities and metabolites in blueberry orchard in China, which were measured by using high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Altogether, 45.66% of the bacterial operational taxonomic units (OTUs) and 9.08% of the fungal OTUs were detected in all treatments. Principal coordinates analysis demonstrated that the bacterial and fungal communities in MS and PF treatments were similar, whereas the communities in the not-organic fertilized control (CK) were significantly different from those in the organic fertilizer treatments. Proteobacteria, Acidobacteria, and Bacteroidetes were the dominant bacterial phyla, and Basidiomycota, Ascomycota, and Mortierellomycota the dominant fungal phyla. Redundancy analysis indicated that pH and available potassium were the main factors determining the composition of microbial communities. The fungal genera Postia, Cephalotrichum, and Thermomyces increased in organic fertilizer treatments, and likely promoted the degradation of organic fertilizers into low molecular-weight metabolites (e.g., amino acids). PCA and PLS-DA models showed that the metabolites in CK were different from those in the other three treatments, and those in CM were clearly different from those in MS and PF. Co-occurrence network analysis showed that several taxa correlated positively with amino acid contents. The results of this study provide new insights into organic waste reutilization and new directions for further studies.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu Sichuan, 611130, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu Sichuan, 611130, China.
| |
Collapse
|
2
|
Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 2021; 52:1257-1269. [PMID: 33904151 PMCID: PMC8324693 DOI: 10.1007/s42770-021-00503-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However, lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review provides insights into strategies for production of microbial lipases for potential biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| |
Collapse
|
3
|
de Oliveira ALL, Assunção JCDC, Pascoal CVP, Bezerra MLS, Silva ACS, de Souza BV, Rodrigues FEA, Ricardo NMPS, Arruda TBMG. Waste of Nile Tilapia ( Oreochromis niloticus) to Biodiesel Production by Enzymatic Catalysis—Optimization Using Factorial Experimental Design. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André Luis Lima de Oliveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, P.O. Box
6021, 60.440-900, Fortaleza, Ceará CEP 60455-760, Brazil
| | - João Carlos da Costa Assunção
- Instituto Federal do Ceará, Programa de Pós-Graduação em Energias Renováveis, Campus Maracanaú, Maracanáu, Ceará 61939-140, Brazil
| | - Caio Victor Pereira Pascoal
- Instituto Federal do Ceará, Programa de Pós-Graduação em Energias Renováveis, Campus Maracanaú, Maracanáu, Ceará 61939-140, Brazil
| | - Micaelle Licia Santos Bezerra
- Instituto Federal do Ceará, Programa de Pós-Graduação em Energias Renováveis, Campus Maracanaú, Maracanáu, Ceará 61939-140, Brazil
| | - Antonio Caian Sousa Silva
- Instituto Federal do Ceará, Programa de Pós-Graduação em Energias Renováveis, Campus Maracanaú, Maracanáu, Ceará 61939-140, Brazil
| | - Bruno Viana de Souza
- Instituto Federal do Ceará, Programa de Pós-Graduação em Energias Renováveis, Campus Maracanaú, Maracanáu, Ceará 61939-140, Brazil
| | | | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, P.O. Box
6021, 60.440-900, Fortaleza, Ceará CEP 60455-760, Brazil
| | - Tathilene Bezerra Mota Gomes Arruda
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, P.O. Box
6021, 60.440-900, Fortaleza, Ceará CEP 60455-760, Brazil
| |
Collapse
|
4
|
Nathan VK, Rani ME. A cleaner process of deinking waste paper pulp using Pseudomonas mendocina ED9 lipase supplemented enzyme cocktail. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36498-36509. [PMID: 32562224 DOI: 10.1007/s11356-020-09641-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Lipase enzyme has a critical role in deinking process along with other lignocellulosic enzymes. In this paper, we try to demonstrate the role of lipase in the enzyme cocktail used for enzymatic deinking. For this, we identified a potential lipolytic bacterium, Pseudomonas mendocina ED9 isolated from elephant dung with a molecular weight of 35 kDa. During the Box-Benhken model optimization, a maximum lipase activity of 105.12 U/g, which was 12.36-fold higher than the initial enzyme activity and 1.3-fold higher than the activity obtained during the Plackett Burman design, was achieved. A maximum lipase activity of 105.12 U/g was obtained after optimization. Ammonium sulphate (60%) precipitation resulted in a specific activity of 68.19 U/mg with a 1.4-fold purification and yield of 64%. Lipase from P. mendocina ED9 exhibited a Km of 0.5306 mM and Vmax of 25.0237 μmol/min/mg. A Δ brightness of approximately 14.5% were achieved during the enzymatic deinking using cocktail comprised of cellulase, xylanase and lipase. This reports the significant role and efficacy of lipase in enzyme cocktails for deinking applications. This formulation will reduce the pollution and environmental toxicity of conventional chemical deinking.
Collapse
Affiliation(s)
- Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
- Research Centre, Department of Botany and Microbiology, Lady Doak College, Madurai, Tamil Nadu, 625002, India.
| | - Mary Esther Rani
- Research Centre, Department of Botany and Microbiology, Lady Doak College, Madurai, Tamil Nadu, 625002, India
| |
Collapse
|
5
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Lajis AFB. Realm of Thermoalkaline Lipases in Bioprocess Commodities. J Lipids 2018; 2018:5659683. [PMID: 29666707 PMCID: PMC5832097 DOI: 10.1155/2018/5659683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
Collapse
Affiliation(s)
- Ahmad Firdaus B. Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
7
|
Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, Halim M. Utilization of acid pre-treated coconut dregs as a substrate for production of detergent compatible lipase by Bacillus stratosphericus. AMB Express 2017. [PMID: 28651380 PMCID: PMC5482794 DOI: 10.1186/s13568-017-0433-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
Collapse
|