1
|
Hnaineh Z, Sokhn ES. Prevalence of bacteremia and antimicrobial resistance pattern among patients in South Lebanon. Am J Infect Control 2025; 53:139-143. [PMID: 39374635 DOI: 10.1016/j.ajic.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Bacteremia is a leading cause of morbidity and mortality worldwide. Rising prevalence and antimicrobial resistance (AMR) are critical public health issues. This study aims to determine the prevalence of bacteremia and the AMR pattern among patients in South Lebanon. METHODS A cross-sectional study analyzed 76 positive blood cultures from Hammoud and Labib Hospitals in South Lebanon between September 2023 and March 2024. The phenotype and antimicrobial susceptibility of gram-positive and gram-negative were determined by using disk diffusion. Genotypically, polymerase chain reaction was used to detect the carbapenemase-resistant Enterobacterales (CRE), extended-spectrum β-lactamases (ESBL), and methicillin-resistant Staphylococcus aureus genes. RESULTS Out of 76 isolates, 38 (50%) were gram-positive and 38 (50%) were gram-negative. Escherichia coli was the most common among gram-negative (18. 42%), with 10.52% ESBL and 3.94% CRE. Staphylococcus coagulase negative was the most common among gram-positive (40.78%), followed by Staphylococcus aureus (6.57%), with 3.94% methicillin-resistant S. aureus. The prevalent ESBL gene was CTX-M (100%), and for the CRE, NDM (66.66%) was the most common gene. Regarding S. aureus, 66.66% were mecA. DISCUSSION The diverse bacteremia isolates and resistance genes in South Lebanon reflect global variability in incidence and resistance profiles. CONCLUSIONS High rates of bacteremia and AMR in South Lebanon underscore the need for effective antibiotic stewardship programs.
Collapse
Affiliation(s)
- Zahra Hnaineh
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Elie Salem Sokhn
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| |
Collapse
|
2
|
Christina S, Praveena R, Saikumar C. Emerging Resistance Mechanisms in Gram-Positive Bacteria Isolated From Septicemia Cases in ICUs: A Focus on Genotypic Insights. Cureus 2025; 17:e76979. [PMID: 39912004 PMCID: PMC11794959 DOI: 10.7759/cureus.76979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
Background Bloodstream infections (BSIs) are associated with high morbidity and mortality, especially in intensive care unit (ICU) settings. The most common Gram-positive pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococci (CoNS), are likely to cause BSIs. The phenotypic and genotypic characteristics of multidrug-resistant (MDR) Staphylococcal species isolated from patients admitted to the ICU with septicemia were evaluated for better treatment outcomes. Materials and methods A cross-sectional study was conducted at Sree Balaji Medical College and Hospital over two years (July 2022 to June 2024). Blood samples in blood culture bottles received in the laboratory from ICU patients with suspected sepsis were included in this study. The BacT/ALERT® 3D system (bioMérieux, France) was used to assess the bacterial growth. The VITEK® 2 system (bioMérieux, France) and conventional methods were used to identify Gram-positive isolates. Antibiotic susceptibility was determined by the Kirby-Bauer disc diffusion method, and polymerase chain reaction (PCR) was used to detect genes like mecA, icaA, and icaD genes. Results Out of 274 blood samples, eight (2.9%) were contaminants, and 121 (44.2%) were culture-positive as true pathogens. Eighty-seven (71.9%) Gram-positive isolates were identified from the positive blood cultures, of which CoNS was predominant (51, 58.6%), followed by Staphylococcus aureus (25, 28.7%). Methicillin resistance was observed in 10 (13.1%) Staphylococcus aureus and 14 (18.4%) CoNS isolates. PCR detected the mecA gene in 20 (83.3%) methicillin-resistant isolates and biofilm-related genes icaD in 64 (84.2%) and icaA in 58 (76.3%). Vancomycin and teicoplanin showed high effectiveness. Conclusions This study has emphasized the importance of molecular screening for the mecA, icaA, and icaD genes in framing antibiotic regimens. The findings emphasize the efficacy of vancomycin, teicoplanin, and linezolid in combating MDR Staphylococcus infections in ICUs of hospitals and demonstrate the importance of antibiotic stewardship.
Collapse
Affiliation(s)
- Sharon Christina
- Microbiology, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Raveendran Praveena
- Microbiology, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Chitralekha Saikumar
- Microbiology, Sree Balaji Medical College and Hospital, Bharath Institute of Higher education and Research, Chennai, IND
| |
Collapse
|
3
|
Chauhan R, Nate Z, Ike B, Kwabena Adu D, Alake J, Gill AAS, Miya L, Bachheti Thapliyal N, Karpoormath R. One pot fabrication of diamino naphthalene -AuNPs decorated graphene nanoplatform for the MRSA detection in the biological sample. Bioelectrochemistry 2024; 157:108674. [PMID: 38460467 DOI: 10.1016/j.bioelechem.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Early monitoring of MRSA can effectively mitigate the disease risk by using Penicillin-binding protein 2a (PbP2a) biomarker. Diamino naphthalene-AuNPs decorated graphene (AuNPsGO-DN) nanocomposite was synthesized for a rapid and sensitive immunosensor detecting PbP2a. The synthesized AuNPsGO-DN nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). Electrochemical characterization done with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrical impedance spectroscopy (EIS) techniques. Anti-PbP2a monoclonal antibodies immobilized at AuNPsGO-DN/GCE via covalent bonding. AuNPs enhanced the electrode surface area and the antibodies' loading. Mercaptopropionic acid (MPA) was a linker between the AuNPs and antibodies, orientated the antibodies as opposite to the PbP2a antigen, and improved the sensitivity and specificity. The antiPbP2a/MPA/AuNPsGO-DN/GCE electrode displayed sensitive and selective detection towards the PbP2a antigen in phosphate buffer saline (PBS pH 7.4). The broad linear range from 0.01 to 8000 pg/mL was obtained with LOD of 0.154 pg/mL and 0.0239 pg/mL, respectively. A label-free, simple, and sensitive immunosensor was developed with a 98-106 % recovery rate in spiked biological samples. It shows the potential applicability of the developed immunoelectrode.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Zondi Nate
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Blessing Ike
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Darko Kwabena Adu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Lungelo Miya
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Neeta Bachheti Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
4
|
Soimala T, Wasiksiri S, Boonchuay K, Wongtawan T, Fungwithaya P. Methicillin-resistant coagulase-positive staphylococci in new, middle-aged, and old veterinary hospitals in southern Thailand: A preliminary study. Vet World 2024; 17:282-288. [PMID: 38595667 PMCID: PMC11000468 DOI: 10.14202/vetworld.2024.282-288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Methicillin-resistant coagulase-positive staphylococci (MRCoPS) cause pyoderma, dermatitis, and nosocomial infection. Numerous factors, including indiscriminate antimicrobial use (AMU) in veterinary medicine, cleaning practices, and AMU in hospitals, contribute to MRCoPS. However, the relationship between hospital age and MRCoPS has not yet been investigated. This study aimed to estimate the prevalence of MRCoPS in the treatment and operation rooms of new, middle-aged, and old veterinary hospitals. Materials and Methods Samples were collected from small animal hospitals in Surat Thani, Nakhon Si Thammarat, and Songkhla in Thailand. Hospitals were defined as those that had been in operation for 5 years (new, n = 5), 5-15 years (middle-aged, n = 6), or >15 years (old, n = 3). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify 280 samples, and duplex polymerase chain reaction was used to identify resistance genes (mecA and blaZ). The VITEK2® automated system was then used to determine the minimum inhibitory concentration. Results A total of 57 Staphylococcus species were identified and classified as coagulase-positive staphylococci (CoPS) (22/57, 38.60%) or coagulase-negative staphylococci (35/57, 61.40%), respectively. Nine of the 22 CoPS (40.90%) harbored the mecA gene, and 21 isolates (95.45%) harbored the blaZ gene. Interestingly, more MRCoPS was found in new hospitals (six isolates) than in middle-aged (one isolate) and old hospitals (two isolates), although there was no statistically significant difference in the presence of MRCoPS across new, middle-aged, and old veterinary hospitals (p = 0.095), Kruskal-Wallis test. There is a need for further detailed studies, including an increase in the number of hospitals in various locations. Conclusion MRCoPS is a nosocomial pathogen that causes zoonotic and recurrent infections in veterinary hospitals. The prevalence of MRCoPS tended to be higher in new hospitals. Areas with heavy animal contact, such as hospital floors, are areas of particular concern, and cleaning/disinfection of these areas must be highlighted in hygiene regimens.
Collapse
Affiliation(s)
- Tanawan Soimala
- Faculty of Veterinary Science, Prince of Songkhla University, Songkhla 90110, Thailand
- Tierärztliches Gesundheitszentrum Oerzen, Melbeck 21406, Germany
| | - Siriwat Wasiksiri
- Faculty of Veterinary Science, Prince of Songkhla University, Songkhla 90110, Thailand
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Excellence Centre for Melioidosis and Other, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Punpichaya Fungwithaya
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand
| |
Collapse
|
5
|
Maluf MM, Bauab K, Boettger BC, Pignatari ACC, Carvalhaes CG. Evaluation of XGEN Multi Sepsis Flow Chip Molecular Assay for Early Diagnosis of Bloodstream Infection. Curr Microbiol 2023; 80:231. [PMID: 37261596 DOI: 10.1007/s00284-023-03325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Among healthcare-associated infections that can affect a critically ill patient, bloodstream infections are one of the most frequent causes of mortality, especially in hospitalized patients. The objective of this work is to evaluate the performance of the XGEN Multi Sepsis Flow Chip for the rapid diagnosis of bloodstream infections compared with conventional tests. In total, 101 positive blood culture samples were included, and the results obtained by the phenotypic conventional method (culture with susceptibility profile) were compared with results obtained by the XGEN Multi Sepsis Flow Chip. This molecular assay allows the simultaneous detection of the main bloodstream infection pathogens, and their most common antibiotic resistance markers in a short period of time. It was possible to observe substantial agreement between the methods for identifying the genus of pathogens. Considering species, the agreement was excellent. In relation to susceptibility, excellent agreement was noted between the detected resistance genes and susceptibility profile obtained through conventional antibiograms. The evaluated assay presented very early and satisfactory results for identification and detection of resistance genes of the main pathogens involved in bloodstream infections.
Collapse
Affiliation(s)
- Maira M Maluf
- Clinical Laboratory, Hospital Israelita Albert Einstein, 2Nd Floor, B Section, 627, Avenue Albert Einstein, São Paulo, 05652-900, Brazil.
| | | | - Bruno C Boettger
- Laboratório Especial de Microbiologia Clínica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antonio C C Pignatari
- Laboratório Especial de Microbiologia Clínica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Assouma FF, Sina H, Dossou AD, Socohou A, Hounsou MC, Avogbe PH, Boya B, Mousse W, Adjanohoun A, Baba-Moussa L. Antibiotic Resistance Profiling of Pathogenic Staphylococcus Species from Urinary Tract Infection Patients in Benin. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6364128. [PMID: 37223336 PMCID: PMC10202603 DOI: 10.1155/2023/6364128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Staphylococci can cause urinary tract infections (UTIs). These UTIs are among the significant causes of antibiotic resistance and the spread of antibiotic-resistant diseases. The current study is aimed at establishing a resistance profile and determining the pathogenicity of Staphylococcus strains isolated from UTI samples collected in Benin. For this purpose, urine samples (one hundred and seventy) that were collected from clinics and hospitals showed UTI in patients admitted/visited in Benin. The biochemical assay method was used to identify Staphylococcus spp., and the disk diffusion method tested the antimicrobial susceptibility. The biofilm formation ability of the isolates of Staphylococcus spp. was investigated by the colorimetric method. The presence of mecA, edinB, edinC, cna, bbp, and ebp genes was examined by multiplex polymerase chain reaction (PCR). The results showed that Staphylococcus species were identified in 15.29% of all infected individuals and that 58% of these strains formed biofilms. Most Staphylococcus strains (80.76%) were isolated in female samples, and the age group below 30 years appeared to be the most affected, with a rate of 50%. All Staphylococcus strains isolated were 100% resistant to penicillin and oxacillin. The lowest resistance rates were seen with ciprofloxacin (30.8%), gentamicin, and amikacin (26.90%). Amikacin was the best antibiotic against Staphylococcus strains isolated from UTIs. The isolates carried mecA (42.31%), bbp (19.23%), and ebp (26.92%) genes in varying proportions. This study provides new information on the risks posed to the population by the overuse of antibiotics. In addition, it will play an essential role in restoring people's public health and controlling the spread of antibiotic resistance in urinary tract infections in Benin.
Collapse
Affiliation(s)
- Funkè F. Assouma
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | | | - Akim Socohou
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | - Milka C. Hounsou
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | - Patrice H. Avogbe
- Laboratory of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of Abomey-Calavi, Benin
| | - Bawa Boya
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| | - Adolphe Adjanohoun
- National Agronomic Research Institute of Benin, 01, BP 884 Cotonou, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Benin
| |
Collapse
|
7
|
Tareen AR, Zahra R. Community Acquired Methicillin Resistant Staphylococci (CA-MRS) in fecal matter of Wild Birds – A ‘One Health’ Point of Concern. J Infect Public Health 2023; 16:877-883. [PMID: 37054501 DOI: 10.1016/j.jiph.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Antibiotic resistance in Staphylococci, particularly methicillin resistance is a major public health concern. While this problem has been reported from the clinical settings, its presence in non-clinical settings also needs to be investigated. The role of wildlife in carrying and disseminating the resistant strains has been established in different studies but its role in Pakistani environment has not been explored yet. To evaluate this, we investigated the carriage of antibiotic resistant Staphylococci in wild birds from Islamabad region. METHODOLOGY Birds fecal matter were collected during September 2016-August 2017 from eight different environmental settings of Islamabad. Prevalence of Staphylococci, their susceptibility profile against eight classes of antibiotics through disc diffusion method, their SCCmec types, co-resistance of macrolide and cefoxitin through PCR assay and biofilm formation through microtitre plate assay were studied. RESULTS Out of 320 birds feces collected, 394 Staphylococci were isolated, where 165 (42%) were resistant to at least one or two classes of antibiotics. High resistance was found against erythromycin (40%) and tetracycline (21%) while cefoxitin resistance was 18% and vancomycin resistance was only in 2%. One hundred and three (26%) isolates exhibited multi-drug resistance (MDR) pattern. mecA gene was detected in 45/70 (64%) cefoxitin resistant isolates. Community acquired methicillin resistant Staphylococci (CA-MRS) were 87% while Hospital acquired methicillin resistant Staphylococci (HA-MRS) were 40%. In the MRS isolates showing co-resistance to macrolides, mefA (69%) and ermC (50%) genes were more prevalent. Strong biofilm formation was observed in 90% of the MRS, of which 48% were methicillin resistant Staphylococcus aureus (MRSA) isolates while 52% were methicillin resistant coagulase negative Staphylococci (MRCoNS). CONCLUSION Occurrence of methicillin resistant strains of Staphylococci in wild birds suggests their role in the carriage and dissemination of resistant strains into the environment. The findings of the study strongly recommend the monitoring of resistant bacteria in wild birds and wildlife.
Collapse
|
8
|
Boonchuay K, Sontigun N, Wongtawan T, Fungwithaya P. Association of multilocus sequencing types and antimicrobial resistance profiles of methicillin-resistant Mammaliicoccus sciuri in animals in Southern Thailand. Vet World 2023; 16:291-295. [PMID: 37041994 PMCID: PMC10082716 DOI: 10.14202/vetworld.2023.291-295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Background and Aim: Mammaliicoccus sciuri, formerly known as Staphylococcus sciuri, is an opportunistic pathogen in the environment, human and animal mucosa, and skin. Although this pathogen is becoming more resistant to drugs and harmful to animals and humans, basic knowledge of this pathogen remains limited. This study aimed to investigate a new multilocus sequencing type (MLST) related to the antibiotic resistance pattern of M. sciuri from animals in southern Thailand.
Materials and Methods: We used 11 methicillin-resistant M. sciuri (MRMS) isolates in this study which were obtained from six horses, four cows, and one chicken of the previous study. Antimicrobial resistance (AMR) was re-evaluated based on the minimum inhibitory concentration using the VITEK® 2 automated system. Three AMR genes were examined, namely mecA, mecC, and blaZ. Staphylococcal chromosomal cassette mec (SCCmec) gene detection was performed through the multiplex polymerase chain reaction (PCR). Internal segments of the seven housekeeping genes, ack, aroE, ftsZ, glpK, gmk, pta1, and tpiA, were used for multilocus sequence typing. The population of resistant bacteria and the types of multidrug-resistant, extensively drug-resistant, and pandemic drug-resistant bacteria were classified through descriptive analysis.
Results: mecA and blaZ genes were detected in all isolates; however, the mecC gene was not observed in any isolate based on the PCR results. All MRMS isolates revealed a non-typable SCCmec. Seven MLSTs (71, 81, 120, 121, 122, 199, and 200) were identified in this study.
Conclusion: The characteristics of MRMS in Southern Thailand were variable, particularly in cattle and horses. The antibiogram and SCCmec types of this pathogen remain concerns with regard to antibiotic-resistant gene transmission among Staphylococcus and Mammaliicoccus species. All MLSTs in Thailand revealed the distribution among clones in Asia, including the virulence of a zoonotic clone in Southern Thailand.
Collapse
Affiliation(s)
- Kanpapat Boonchuay
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Punpichaya Fungwithaya
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Kashef MT, Helmy OM. Development of a Multiplex Polymerase Chain Reaction-Based DNA Lateral Flow Assay as a Point-of-Care Diagnostic for Fast and Simultaneous Detection of MRSA and Vancomycin Resistance in Bacteremia. Diagnostics (Basel) 2022; 12:2691. [PMID: 36359534 PMCID: PMC9689860 DOI: 10.3390/diagnostics12112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/06/2024] Open
Abstract
To reduce high mortality and morbidity rates, timely and proper treatment of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection is required. A multiplex polymerase reaction (mPCR)-based DNA lateral flow assay (MBDLFA) was developed as a point-of-care diagnostic for simultaneous identification of S. aureus, methicillin resistance, and vancomycin resistance directly from blood or blood cultures. A mPCR was developed to detect nuc, mecA, and vanA/B; its sensitivity, specificity, and limit of detection (LOD) were determined. The developed reaction was further modified for use in MBDLFA and its sensitivity for detection of target genes from artificially inoculated blood samples was checked. The optimized mPCR successfully detected nuc, mecA, and vanA/B from genomic DNA of bacterial colonies with LODs of 107, 107, and 105 CFU/mL, respectively. The reaction was sensitive and specific. The optimized mPCR was used in MBDLFA that detected nuc, mecA, and vanA/B with LODs of 107, 108, and 104 CFU/mL, respectively, directly from artificially inoculated blood. The developed MBDLFA can be used as a rapid, cheap point-of-care diagnostic for detecting S. aureus, MRSA, and vancomycin resistance directly from blood and blood cultures in ~2 h with the naked eye. This will reduce morbidity, mortality, and treatment cost in S. aureus bacteremia.
Collapse
Affiliation(s)
| | - Omneya M. Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
10
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
11
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
12
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand swabs. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmers' hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
13
|
Phenotypic and Molecular Detection of Slime Producing Staphylococcus Spp. Obtained from Blood Samples of Patients Undergoing Hematopoietic Stem-Cell Transplantation. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: to investigate the slime production in isolates of Staphylococcus spp., associated with bacteremia in patients after hematopoietic stem-cell transplantation (HSCT) and to determine the relationship between the slime production and ica genes carriage, as well as the correlation of ica and methicillin resistance.
Materials and methods: Between 2019 and 2020, twenty-one clinically significant Staphylococcus spp. isolates were obtained from blood cultures of 17 patients after HSCT. The species identification and the susceptibility to cefoxitin were determined by BD Phoenix M50. Two phenotypic tests (Congo red agar, CRA; Christensen’s method, TT) and PCR for icaA and icaD were used to detect slime production. A PCR method was also used to detect the mecA, mecC genes.
Results: In the studied group of 21 isolates (S. epidermidis, n = 12; S. haemolyticus, n = 4; S. hominis, n = 2; S. aureus, n = 3), the phenotypic tests were positive in 13 isolates. Ten isolates (47.6%) were identified as carriers of ica genes (S. epidermidis, n = 9, and S. haemolyticus, n = 1). Five isolates (23.8%) were detected as slime producers by all three methods. The mecA gene was identified in 18 isolates (85.7%). All ica positive isolates were also mecA carriers.
Conclusion: A relatively high proportion of the blood isolates of Staphylococcus spp. were slime producers, associ-ated with ica genes. A combination of both phenotypic and genetic methods should be used to detect alternative routes of slime production. The co-expression of ica and mecA is associ-ated with the occurrence of difficult-to-eradicate isolates.
Collapse
|
14
|
Fungwithaya P, Sontigun N, Boonhoh W, Boonchuay K, Wongtawan T. Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. Vet World 2022; 15:1087-1096. [PMID: 35698521 PMCID: PMC9178593 DOI: 10.14202/vetworld.2022.1087-1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. Materials and Methods: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital’s cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. Results: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. Conclusion: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Centre of Excellence Research for Melioidosis and other Microorganism; Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kanpapat Boonchuay
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
15
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
16
|
Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics (Basel) 2022; 11:antibiotics11040427. [PMID: 35453179 PMCID: PMC9024665 DOI: 10.3390/antibiotics11040427] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a major threat to public health globally. Accurate and rapid detection of resistance to antimicrobial drugs, and subsequent appropriate antimicrobial treatment, combined with antimicrobial stewardship, are essential for controlling the emergence and spread of AMR. This article reviews common antimicrobial susceptibility testing (AST) methods and relevant issues concerning the advantages and disadvantages of each method. Although accurate, classic technologies used in clinical microbiology to profile antimicrobial susceptibility are time-consuming and relatively expensive. As a result, physicians often prescribe empirical antimicrobial therapies and broad-spectrum antibiotics. Although recently developed AST systems have shown advantages over traditional methods in terms of testing speed and the potential for providing a deeper insight into resistance mechanisms, extensive validation is required to translate these methodologies to clinical practice. With a continuous increase in antimicrobial resistance, additional efforts are needed to develop innovative, rapid, accurate, and portable diagnostic tools for AST. The wide implementation of novel devices would enable the identification of the optimal treatment approaches and the surveillance of antibiotic resistance in health, agriculture, and the environment, allowing monitoring and better tackling the emergence of AMR.
Collapse
|
17
|
Rajaei M, Moosavy MH, Gharajalar SN, Khatibi SA. Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: phenotypic and genotypic study. BMC Microbiol 2021; 21:272. [PMID: 34615465 PMCID: PMC8495966 DOI: 10.1186/s12866-021-02326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background In recent years, interest in the consumption of ready-to-eat (RTE) food products has been increased in many countries. However, RTE products particularly those prepared by meat may be potential vehicles of antibiotic-resistance foodborne pathogens. Considering kebab and hamburger are the most popular RTE meat products in Iran, this study aimed to investigate the prevalence and antimicrobial resistance of common foodborne pathogens (Escherichia coli, Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes) in raw kebab and hamburger samples collected from fast-food centers and restaurants. Therefore, total bacterial count (TBC), as well as the prevalence rates and antibiogram patterns of foodborne pathogens in the samples were investigated. Also, the presence of antibiotic-resistance genes (blaSHV, blaTEM,blaZ, and mecA) was studied in the isolates by PCR. Results The mean value of TBC in raw kebab and hamburger samples was 6.72 ± 0.68 log CFU/g and 6.64 ± 0.66 log CFU/g, respectively. E. coli had the highest prevalence rate among the investigated pathogenic bacteria in kebab (70%) and hamburger samples (48%). Salmonella spp., L. monocytogenes, and S. aureus were also recovered from 58, 50, and 36% of kebab samples, respectively. The contamination of hamburger samples was detected to S. aureus (22%), L. monocytogenes (22%), and Salmonella spp. (10%). In the antimicrobial susceptibility tests, all isolates exhibited high rates of antibiotic resistance, particularly against amoxicillin, penicillin, and cefalexin (79.66–100%). The blaTEM was the most common resistant gene in the isolates of E. coli (52.54%) and Salmonella spp. (44.11%). Fourteen isolates (23.72%) of E. coli and 10 isolates (29.41%) of Salmonella spp. were positive for blaSHV. Also, 16 isolates (55.17%) of S. aureus and 10 isolates (27.27%) of L. monocytogenes were positive for mecA gene. Conclusions The findings of this study showed that raw kebab and hamburger are potential carriers of antibiotic-resistance pathogenic bacteria, which can be a serious threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02326-8.
Collapse
Affiliation(s)
- Maryam Rajaei
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Sahar Nouri Gharajalar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
18
|
Pathogenicity and Molecular Characterization of Staphylococcus aureus Strains Isolated from the Hospital Environment of CHU-Z Abomey-Calavi/Sô-Ava (Benin). BIOMED RESEARCH INTERNATIONAL 2021; 2021:6637617. [PMID: 34395621 PMCID: PMC8363449 DOI: 10.1155/2021/6637617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major human pathogen present on a third of the healthy population. The bacterium possesses an extensive arsenal of virulence factors. The pathogenicity is linked with S. aureus high plasticity and its exceptional ability to incorporate foreign genetic material. The aim of the present study was to perform molecular characterization of Staphylococcus aureus strains isolated from the clinical environment of the CHU-Z Abomey-Calavi/Sô-Ava. Isolation of Staphylococcus aureus bacterium was performed on Chapman agar. Toxin production by isolated S. aureus strains was investigated using the radial immunoprecipitation technique. A colorimetric assay was used to evaluate Staphylococcus aureus lipase (SA-Lipase) production. Finally, the expression of antibiotic resistance genes and genes encoding toxins production was investigated. Our data suggest that none of the isolated Staphylococcus aureus strains expressed the investigated toxin genes. Interestingly, SA-Lipase was produced by 14.28% of our isolated S. aureus strains. The mecA gene was present in 57.14% of the isolated strains, while PVL and TSST-1 genes were identified in 2.85 and 7.14% of S. aureus, respectively. Significant genetic diversity was observed along the hospital environment S. aureus strains. The present study reveals the level of virulence of S. aureus strains isolated in the different units of CHU-Z Abomey Calavi/Sô-Ava through the production of lipase, PVL, and epidermolysins. The molecular study has favored a genetic characterization within the isolated strains.
Collapse
|
19
|
Development of a Prototype Lateral Flow Immunoassay for Rapid Detection of Staphylococcal Protein A in Positive Blood Culture Samples. Diagnostics (Basel) 2020; 10:diagnostics10100794. [PMID: 33036348 PMCID: PMC7601020 DOI: 10.3390/diagnostics10100794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bloodstream infection (BSI) is a major cause of mortality in hospitalized patients worldwide. Staphylococcus aureus is one of the most common pathogens found in BSI. The conventional workflow is time consuming. Therefore, we developed a lateral flow immunoassay (LFIA) for rapid detection of S. aureus-protein A in positive blood culture samples. A total of 90 clinical isolates including 58 S. aureus and 32 non-S. aureus were spiked in simulated blood samples. The antigens were extracted by a simple boiling method and diluted before being tested using the developed LFIA strips. The results were readable by naked eye within 15 min. The sensitivity of the developed LFIA was 87.9% (51/58) and the specificity was 93.8% (30/32). When bacterial colonies were used in the test, the LFIA provided higher sensitivity and specificity (94.8% and 100%, respectively). The detection limit of the LFIA was 107 CFU/mL. Initial evaluation of the LFIA in 20 positive blood culture bottles from hospitals showed 95% agreement with the routine methods. The LFIA is a rapid, simple and highly sensitive method. No sophisticated equipment is required. It has potential for routine detection particularly in low resource settings, contributing an early diagnosis that facilitates effective treatment and reduces disease progression.
Collapse
|
20
|
Direct detection of methicillin-resistant in Staphylococcus spp. in positive blood culture by isothermal recombinase polymerase amplification combined with lateral flow dipstick assay. World J Microbiol Biotechnol 2020; 36:162. [PMID: 32989593 DOI: 10.1007/s11274-020-02938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Methicillin-resistant staphylococci (MRS) are important antimicrobial-resistant pathogens in sepsis. Conventional blood cultures take 24-72 h. The polymerase chain reaction (PCR)-based methods give faster results (2-3 h) but need expensive thermal cyclers. We therefore developed an isothermal recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) assay for rapid detection of MRS in spiked blood culture samples. Fifty-six clinical isolates including 38 mecA-carrying staphylococci and 18 non-mecA-carrying organisms as confirmed by PCR methods were studied. RPA primer set and probe specific for mecA gene (encoding penicillin-binding protein 2a) were designed. RPA reaction was carried out under isothermal condition (45 °C) within 20 min and read by LFD in 5 min. The RPA-LFD provided 92.1% (35/38) sensitivity for identifying MRS in positive blood culture samples, and no cross-amplification was found (100% specificity). This test failed to detect three mecA-carrying S.sciuri isolates. The detection limits of RPA-LFD method for identifying MRS were equal to those of PCR method. The RPA-LFD is simple, fast, and user-friendly. This method could detect the mecA gene directly from the positive blood culture samples without requirement for special equipment. This method would be useful for appropriate antibiotic therapy and infection control, particularly in a low-resource setting.
Collapse
|
21
|
Pereira VC, Romero LC, Pinheiro-Hubinger L, Oliveira A, Martins KB, Cunha MDLRDSD. Coagulase-negative staphylococci: a 20-year study on the antimicrobial resistance profile of blood culture isolates from a teaching hospital. Braz J Infect Dis 2020; 24:160-169. [PMID: 32084346 PMCID: PMC9392043 DOI: 10.1016/j.bjid.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 10/28/2022] Open
Abstract
The increasing rates of nosocomial infection associated with coagulase-negative staphylococci (CoNS) were the rationale for this study, aiming to categorize oxacillin-resistant CoNS species recovered from blood culture specimens of inpatients at the UNESP Hospital das Clínicas in Botucatu, Brazil, over a 20-year period, and determine their sensitivity to other antimicrobial agents. The mecA gene was detected in 222 (74%) CoNS samples, and the four types of staphylococcal chromosomal cassette mec (SCCmec) were characterized in 19.4%, 3.6%, 54.5%, and 14.4% of specimens, respectively, for types I, II, III, and IV. Minimal inhibitory concentration (MIC) values to inhibit 50% (MIC50) and 90% (MIC90) of specimens were, respectively, 2 and >256μL/mL for oxacillin, 1.5 and 2μL/mL for vancomycin, 0.25 and 0.5μL/mL for linezolid, 0.094 and 0.19μL/mL for daptomycin, 0.19 and 0.5μL/mL for quinupristin/dalfopristin, and 0.125 and 0.38μL/mL for tigecycline. Resistance to oxacillin and tigecycline and intermediate resistance to quinupristin/dalfopristin were observed. Eight (2.7%) of all 300 CoNS specimens studied showed reduced susceptibility to vancomycin. Results from this study show high resistance rates of CoNS to antimicrobial agents, reflecting the necessity of using these drugs judiciously and controlling nosocomial dissemination of these pathogens.
Collapse
Affiliation(s)
- Valéria Cataneli Pereira
- UNESP-Universidade Estadual Paulista, Instituto de Biociências de Boucatu, Departamento de Microbiologia e Imunologia, São Paulo, SP, Brazil; UNOESTE-Universidade Oeste Paulista, Departamento de Microbiologia, São Paulo, SP, Brazil.
| | - Letícia Calixto Romero
- UNESP-Universidade Estadual Paulista, Instituto de Biociências de Boucatu, Departamento de Microbiologia e Imunologia, São Paulo, SP, Brazil
| | - Luiza Pinheiro-Hubinger
- UNESP-Universidade Estadual Paulista, Instituto de Biociências de Boucatu, Departamento de Microbiologia e Imunologia, São Paulo, SP, Brazil
| | - Adilson Oliveira
- UNESP-Universidade Estadual Paulista, Instituto de Biociências de Boucatu, Departamento de Microbiologia e Imunologia, São Paulo, SP, Brazil
| | - Katheryne Benini Martins
- UNESP-Universidade Estadual Paulista, Instituto de Biociências de Boucatu, Departamento de Microbiologia e Imunologia, São Paulo, SP, Brazil
| | | |
Collapse
|