1
|
Ma S, Ni J, Ye D, Kuang Y, Wang Z, Yang L. Human umbilical cord mesenchymal stem cells improve the survial of flaps by promoting angiogenesis in mice. Eur J Med Res 2025; 30:356. [PMID: 40312717 PMCID: PMC12046903 DOI: 10.1186/s40001-025-02602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Flap necrosis post-operation disturbs surgeons during plastic and reconstructive surgery. This is caused by hypoperfusion and subsequent ischemia-reperfusion injury, where restricted blood flow followed by restored circulation paradoxically exacerbates tissue damage. Mesenchymal stem cells, which show multidirectional differentiation, provide hematopoietic support and are involved in immune regulation and anti-fibrosis, have inspired research on improving the blood supply of flaps. METHODS Primary human umbilical cord mesenchymal stem cells (HuMSCs), were obtained and subcultured for expansion. The cells of the third generation were incubated in a gelatin sponge. Thirty Kunming mice were randomly divided into three groups, and saline, HuMSCs, and HuMSCs-CM were injected preoperatively into the skin of the back. The vessel density was assessed on the tenth day. Forty-eight Kunming mice were divided into two groups. Group A was subdivided into the saline group, HuMSCs, and HuMSCs-CM groups and pretreated as described above. In Group B, the intervention was changed from injection to subcutaneous embedding. Random flaps were made on the back in both groups on the tenth day after pretreatment. The survival rate of the flap was calculated on the seventh day. RESULTS HuMSCs-CM significantly increased the microvessel density on the tenth day after pretreatment. The flap survival rate was higher in the cell and CM groups, rising from approximately 13% to 60% in Group A, and to about 75% in Group B. Moreover, subcutaneous embedding of cell-carrying gelatin sponges improved flap survival compared to other interventions. CONCLUSION Improved cell incubation conditions can enhance its utility. The application of HuMSCs and their conditioned medium promoted the survival of the flap by inducing neovasculogenesis.
Collapse
Affiliation(s)
- Siyi Ma
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jintao Ni
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Kuang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhixia Wang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lujun Yang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
4
|
Wang M, Zhan H, Wang J, Song H, Sun J, Zhao G. Calcium silicate-stimulated adipose-derived stem cells promote angiogenesis and improve skin wound healing. Aging (Albany NY) 2023; 15:204760. [PMID: 37263631 DOI: 10.18632/aging.204760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Skin wound healing is a complicated process involving proliferation, inflammation, coagulation, and hemostasis, and scar tissue formation of wound repairing. Adipose-derived stem cells (ADSCs) have presented potential therapeutic effects in the non-healing and chronic wound. Calcium silicate (CS) ceramics have been identified as a new type of bioceramics for tissue construction and regeneration. Here, we aimed to explore the impact of CS on the regulation of ADSCs-mediated wound healing. Significantly, CS was able to dose-dependently enhance the proliferation of ADSCs. CS inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells in the H2O2-treated ADSCs. Similarly, the Bcl-2 expression was elevated while Bax and cleaved caspase-3 expression were repressed by CS in the cells. CS could induce migration and reduce oxidative stress of ADSCs. Moreover, immunofluorescence analysis and Western blot analysis showed that CS could promote CXCR4 expression in ADSCs. Moreover, CS-stimulated ADSCs enhanced migration and angiogenic capacity of HUVEC. Importantly, CS-stimulated ADSCs improved wound healing in full-thickness skin defect mouse model. Thus, we conclude that CS improves ADSCs-attenuated wound healing in vivo and in vitro. Our finding presents novel insight in the scenario that CS regulates ADSCs and wound healing. CS may be applied as potential materials for the treatment of wound healing.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Hongyan Zhan
- Department of B-Ultrasound, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Jianhua Wang
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Hua Song
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Jianhua Sun
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Gang Zhao
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
6
|
Vriend L, van Dongen J, Sinkunas V, Brouwer L, Buikema H, Moreira L, Gemperli R, Bongiovanni L, de Bruin A, van der Lei B, Camargo C, Harmsen MC. Limited efficacy of adipose stromal cell secretome-loaded skin-derived hydrogels to augment skin flap regeneration in rats. Stem Cells Dev 2022; 31:630-640. [PMID: 35583223 DOI: 10.1089/scd.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insufficient vascularization is a recurring cause of impaired pedicled skin flap healing. The administration of adipose tissue-derived stromal cells' (ASC) secretome is a novel approach to augment vascularization. Yet, the secretome comprised soluble factors that require a sustained release vehicle to increase residence time. We hypothesized that administration of a hydrogel derived from decellularized extracellular matrix (ECM) of porcine skin with bound trophic factors from ASCs, enhances skin flap viability and wound repair in a rat model. Porcine skin was decellularized and pepsin-digested to form a hydrogel at 37°C. Conditioned medium (CMe) of human ASC was collected, concentrated twentyfold and mixed with the hydrogel. Sixty Wistar rats were included. A dorsal skin flap (caudal based) of 3 x 10 cm was elevated for topical application of: DMEM medium (group I), a pre-hydrogel with or without ASC CMe (group II and III) or ASC CMe (group IV). After 7, 14 and 28 days, perfusion was measured and skin flaps were harvested for wound healing assessment and immunohistochemical analysis. Decellularized skin ECM hydrogel contained negligible amounts of DNA (11.6 ± 0.6 ng/mg), was noncytotoxic and well-tolerated by rats. Irrespective of ASC secretome, ECM hydrogel application resulted macroscopically and microscopically in similar dermal wound healing in terms of proliferation, immune response and matrix remodeling as the control group. However, ASC CMe alone increased vessel density after seven days. Concluding, porcine skin derived ECM hydrogels loaded with ASC secretome are non-cytotoxic but demand optimization to significantly augment wound healing of skin flaps.
Collapse
Affiliation(s)
- Linda Vriend
- University Medical Centre Groningen, 10173, Plastic Surgery, Groningen, Netherlands;
| | - Joris van Dongen
- University Medical Center Utrecht, Plastic Surgery, Netherlands;
| | - Viktor Sinkunas
- Universidade of Sao Paulo, Sao Paulo, Brazil, Department of Cardiovascular Surgery, Brazil;
| | - Linda Brouwer
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Netherlands;
| | - Henk Buikema
- University and Medical Center Groningen, The Netherlands, Medical Biology and Pathology, Netherlands;
| | - Luiz Moreira
- Universidade of Sao Paulo, Sao Paulo, Brazil, Department of Cardiovascular Surgery, Brazil;
| | - Rolf Gemperli
- Universidade de São Paulo, São Paulo, Brazil, Department of Surgery, Discipline of Plastic Surgery, Brazil;
| | - Laura Bongiovanni
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, the Netherlands, Netherlands.,Utrecht University, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht, the Netherlands, Netherlands;
| | - Alain de Bruin
- Faculty of Veterinary Medicine, Pathobiology, Utrecht, Netherlands;
| | - Berend van der Lei
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, Department of Plastic Surgery, Netherlands;
| | - Cristina Camargo
- Universidade of Sao Paulo, Department of Plastic Surgery Microsurgery and Plastic Surgery laboratory, Sao Paulo, Brazil, Brazil;
| | - Martin C Harmsen
- University of Groningen, Dept. Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands;
| |
Collapse
|
7
|
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V, Safaei Z, Izanlou S, Khoradmehr A, Nabipour I, Shirazi R, Tamadon A. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int 2021; 2021:1634782. [PMID: 34745268 PMCID: PMC8566082 DOI: 10.1155/2021/1634782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.
Collapse
Affiliation(s)
- Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Safaei
- Department of Obstetrics and Gynecology, School of Medicine, Amir Al Mo'menin Hospital, Amir Al Mo'menin IVF Center, Arak University of Medical Sciences, Arak, Iran
| | - Safoura Izanlou
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
8
|
Li Y, Jiang QL, Van der Merwe L, Lou DH, Lin C. Preclinical efficacy of stem cell therapy for skin flap: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:28. [PMID: 33413598 PMCID: PMC7791712 DOI: 10.1186/s13287-020-02103-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Qi-Lin Jiang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Dong-Hao Lou
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
9
|
Nie WB, Zhang D, Wang LS. Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1241-1256. [PMID: 32273686 PMCID: PMC7105364 DOI: 10.2147/dddt.s243944] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
There have been marked changes in the field of stem cell therapeutics in recent years, with many clinical trials having been conducted to date in an effort to treat myriad diseases. Mesenchymal stem cells (MSCs) are the cell type most frequently utilized in stem cell therapeutic and tissue regenerative strategies, and have been used with excellent safety to date. Unfortunately, these MSCs have limited ability to engraft and survive, reducing their clinical utility. MSCs are able to secrete growth factors that can support the regeneration of tissues, and engineering MSCs to express such growth factors can improve their survival, proliferation, differentiation, and tissue reconstructing abilities. As such, it is likely that such genetically modified MSCs may represent the next stage of regenerative therapy. Indeed, increasing volumes of preclinical research suggests that such modified MSCs expressing growth factors can effectively treat many forms of tissue damage. In the present review, we survey recent approaches to producing and utilizing growth factor gene-modified MSCs in the context of tissue repair and discuss its prospects for clinical application.
Collapse
Affiliation(s)
- Wen-Bo Nie
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Li-Sheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| |
Collapse
|