1
|
Bian X, Guo Q, Yau LF, Yang L, Wang X, Zhao S, Wu S, Qin X, Jiang ZH, Li C. Berberine-inspired ionizable lipid for self-structure stabilization and brain targeting delivery of nucleic acid therapeutics. Nat Commun 2025; 16:2368. [PMID: 40064874 PMCID: PMC11893799 DOI: 10.1038/s41467-025-57488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lipid nanoparticles have shown success in targeting major organs such as the liver, spleen, and lungs, but crossing the blood-brain barrier (BBB) remains a major challenge. Effective brain-targeted delivery systems are essential for advancing gene therapy for neurological diseases but remain limited by low transport efficiency and poor nucleic acid stability. Here, we report a library of ionizable lipids based on the tetrahydroisoquinoline structure of protoberberine alkaloids, designed to improve BBB penetration via dopamine D3 receptor-mediated endocytosis. These nanoparticles offer three key advantages: enhanced brain uptake, improved nucleic acid stability through poly(A) self-assembly, and minimal immunogenicity with inherent neuroprotective properties. In murine models, they demonstrate therapeutic potential in Alzheimer's disease, glioma, and cryptococcal meningitis. This berberine-inspired delivery system integrates precise receptor targeting with nucleic acid stabilization, offering a promising platform for brain-targeted therapeutics.
Collapse
Affiliation(s)
- Xufei Bian
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Qian Guo
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, PR China
| | - Ling Yang
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyou Wang
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Shikang Zhao
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Shiqiong Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xurong Qin
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, PR China.
| | - Chong Li
- Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
2
|
Yanthan S, Rupreo V, Bhattacharyya J. Entropically driven binding of Camptothecin in the minor groove of salmon testes DNA. Int J Biol Macromol 2024; 282:136790. [PMID: 39490489 DOI: 10.1016/j.ijbiomac.2024.136790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The present study focuses on binding association of Camptothecin (CMT) towards natural deoxy-ribonucleic acid (salmon testes, ST) under physiological conditions of pH 7.4. Extensive spectroscopic and computational techniques have been employed to elucidate thermodynamics of the said interaction. UV and fluorescence analyses portrays significant intensity changes (hyper-chromic and hypsochromic) in the spectra, which confirms effective CMT binding to ST DNA. The McGhee-von Hipple method and Scatchard plot analyses estimated the binding affinities in 105 M-1 range. Associated thermodynamic data revealed spontaneous and exothermic nature of binding. Temperature-dependent fluorescence showed negative change in enthalpy and positive change in entropy, leading to the formation of a 1:1 adduct. Non-polyelectrolytic forces appeared to be the driving force of the ligand-DNA interaction, according to salt-dependent fluorescence. Dye displacement assay, viscosity study, DNA melting, iodide quenching, urea denaturation assay examined the minor groove nature of CMT. In silico docking study examined precise molecular representations of the minor groove binding mechanism that formed between the complex, and the study's findings were consistent with the experimental results. Simulation studies also validated the experimental analysis and docking data. These findings could expedite the process of creating new and improved CMT molecular derivatives and help in the creation of DNA-targeted medicines, which may be beneficial from a pharmaceutical point of view.
Collapse
Affiliation(s)
- Senchumbeni Yanthan
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103, India
| | - Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103, India.
| |
Collapse
|
3
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
4
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
5
|
Vardevanyan PO, Antonyan AP, Movsisyan ZH, Parsadanyan MA, Shahinyan MA, Grigoryan KR, Shilajyan HA. Study of complexation of single-stranded poly(rA) and poly(rU) with methylene blue. J Biomol Struct Dyn 2023; 41:15320-15327. [PMID: 36919567 DOI: 10.1080/07391102.2023.2189475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
To reveal the effect of DNA- or RNA-specific low-molecular compounds on cellular processes on the molecular level, we have carried out the studies with the application of spectroscopic methods. It is necessary for the understanding of structural-functional properties of nucleic acids in cell. In this work the interaction of DNA-specific thiazine dye methylene blue (MB) with synthetic polynucleotides poly(rA) and poly(rU) was studied. The interaction of MB with synthetic polyribonucleotides poly(rA) and poly(rU) was examined in the solution with high ionic strength in a wide phosphate-to-dye (P/D) range, using the absorption and fluorescence spectroscopies, as well as the fluorescence 2D spectra and 3D spectra analyses were given. Values of the fluorescence quenching constants for the complexes of MB with poly(rA) and poly(rU) were calculated (KSV is the Stern-Volmer quenching constant). Two different modes of MB binding to single-stranded (ss-) poly(rA) and poly(rU) and to their hybrid double-stranded (ds-) structure - poly(rA)-poly(rU) were identified. This ligand binds to ss-poly(rA) and poly(rA)-poly(rU) by semi-intercalation and electrostatic modes, but to ss-poly(rU) the prevailing mode is the electrostatic interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poghos O Vardevanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Ara P Antonyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Zvart H Movsisyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Marine A Parsadanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Mariam A Shahinyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Karine R Grigoryan
- Laboratory of Physical Chemistry, Research Institute of Chemistry, Yerevan State University, Yerevan, Armenia
| | - Hasmik A Shilajyan
- Laboratory of Physical Chemistry, Research Institute of Chemistry, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
6
|
Chowdhury S, Kanrar K, Bhuiya S, Das S. The alkaloid cryptolepine as a source of polyadenylate targeting therapeutic agent: Induction of self-assembly in the polyadenylate moiety. Arch Biochem Biophys 2021; 712:109042. [PMID: 34562470 DOI: 10.1016/j.abb.2021.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
RNAs have become a well-known target for chemotherapeutic agents in the recent years. The tails of most eukaryotic m-RNA are characterized by the presence of a long polyadenylate sequence which plays an important role in its growth and maturation. This lays emphasis on development of molecular probes that target the polyadenylate sequence. Cryptolepine (hereafter, CRP) is an indoloquinoline alkaloid well known for its anti-malarial activities. A series of spectroscopic experiments namely absorption studies, fluorimetric studies and circular dichroism studies show that cryptolepine binds with single-stranded polyriboadenylic acid (hereafter, ss-poly (rA)) with a binding constant of ∼5 × 103 M-1 at 25 °C. Moreover thermal denaturation experiments show that the bound form of polyriboadenylic acid shows a characteristic transition profile. Such a profile is indicative of the ability of cryptolepine to induce self-assembly in the polyriboadenylic acid sequence on binding to it. Such ability of CRP to modulate the structural conformation of poly (rA), which in turn may cause functional aspects of the RNA to change, may give us a chance to develop effective alkaloid based chemotherapeutic agents.
Collapse
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Kasturi Kanrar
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
7
|
Kumar S, Nair MS. Deciphering the interaction of flavones with calf thymus DNA and octamer DNA sequence (CCAATTGG) 2. RSC Adv 2021; 11:29354-29371. [PMID: 35479565 PMCID: PMC9040621 DOI: 10.1039/d1ra04101k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 01/18/2023] Open
Abstract
We investigated the interaction of three flavone compounds, baicalein, chrysin and flavone with calf thymus DNA and octamer DNA sequence (CCAATTGG)2. The binding mechanisms of the flavone compounds with both DNA were unveiled using biophysical, thermodynamic and molecular modelling techniques. Absorption and fluorescence titrations confirm the formation of the DNA complexes along with the extent of interaction. Absorption data proposed an intercalation mode of binding. Fluorescence displacement assays using ethidium bromide and Hoechst 33258 data supports a partial intercalation. Potassium iodide quenching substantiated this finding. Circular dichroism data revealed major structural changes on binding with flavones which can arise from intercalation partially or in a tilted arrangement. Analysis of the effect of ionic strength on complex formation eliminated the role of electrostatic interaction in the binding. Differential scanning calorimetric data showed substantial changes in the melting temperatures of complexes and predicted the DNA–baicalein complex as the most stable one. Molecular modelling showcased that the complexes are located near the AT rich region. Docking analysis with different sequences showed that the flavone compounds intercalated with base pairs only with d(CGATCG)2. Binding of flavones induce conformational changes in double stranded DNA.![]()
Collapse
Affiliation(s)
- Shailendra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee Uttarakhand-247667 India +91-1332-273560 +91-1332-285790
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee Uttarakhand-247667 India +91-1332-273560 +91-1332-285790
| |
Collapse
|
8
|
Gargallo R, Aviñó A, Eritja R, Jarosova P, Mazzini S, Scaglioni L, Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119185. [PMID: 33234477 DOI: 10.1016/j.saa.2020.119185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The alkaloid berberine presents many biological activities related to its potential to bind DNA structures, such as duplex or G-quadruplex. Recently, it has been proposed that berberine may interact with i-motif structures formed from the folding of cytosine-rich sequences. In the present work, the interaction of this alkaloid with the i-motif formed by the human telomere cytosine-rich sequence, as well as with several positive and negative controls, has been studied. Molecular fluorescence and circular dichroism spectroscopies, as well as nuclear magnetic resonance spectrometry and competitive dialysis, have been used with this purpose. The results shown here reveal that the interaction of berberine with this i-motif is weak, mostly electrostatics in nature and takes place with bases not involved in C·C+ base pairs. Moreover, this ligand is not selective for i-motif structures, as binds equally to both, folded structure, and unfolded strand, without producing any stabilization of the i-motif. As a conclusion, the development of analytical methods based on the interaction of fluorescent ligands, such as berberine, with i-motif structures should consider the thermodynamic aspects related with the interaction, as well as the selectivity of the proposed ligands with different DNA structures, including unfolded strands.
Collapse
Affiliation(s)
- R Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain.
| | - A Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - P Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - L Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - P Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
9
|
Casciaro B, Mangiardi L, Cappiello F, Romeo I, Loffredo MR, Iazzetti A, Calcaterra A, Goggiamani A, Ghirga F, Mangoni ML, Botta B, Quaglio D. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules 2020; 25:molecules25163619. [PMID: 32784887 PMCID: PMC7466045 DOI: 10.3390/molecules25163619] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure–function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
| | - Laura Mangiardi
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Isabella Romeo
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Antonella Goggiamani
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| |
Collapse
|
10
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anatoliy Buchelnikov
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Nina Tverdokhleb
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
| | - Maxim Evstigneev
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
- Laboratory of Organic Synthesis and NMR Spectroscopy, Belgorod State University, 308015 Belgorod, Russia
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine;
| | - Vsevolod Cherepanov
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Valeriy Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anton Naumovets
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Correspondence: ; Tel.: +49-(0)-3375-508-249
| |
Collapse
|
11
|
Thakur Y, Tripathi M, Verma B, Khilari R, Agrawal R, Likheshwari, Pande R, Mohapatra E. New insight into the DNA binding studies, In-Vitro anti-cancer activity and molecular modelling of dioxo complexes of Molybdenum(VI) and Tungsten(VI) hydroxamic acids. JOURNAL OF MACROMOLECULAR SCIENCE, PART A 2019; 56:357-374. [DOI: 10.1080/10601325.2019.1578615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Bharati Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rubi Khilari
- CSIR-Central Institute of Mining and Fuel Research, Bilaspur Unit, Chhattisgarh, India
| | - Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Likheshwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Eli Mohapatra
- Biochemistry Department, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
12
|
Thakur Y, Tripathi M, Verma B, Khilari R, Agrawal R, Likheshwari, Khursheed Siddiqi M, Pande R, Mohapatra E, Khan RH. Interaction of cobalt(II) and copper(II) hydroxamates with polyriboadenylic acid: An insight into RNA based drug designing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:481-508. [PMID: 30732529 DOI: 10.1080/15257770.2018.1562074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/17/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
The polyadenylic acid [poly(A)] tail of mRNA plays a noteworthy role in the initiation of the translation, maturation, and stability of mRNA. It also significantly contributes to the production of alternate proteins in eukaryotic cells. Hence, it has recently been recognized as a prospective drug target. Binding affinity of bis(N-p-tolylbenzohydroxamato)Cobalt(II), [N-p-TBHA-Co(II)] (1) and bis(N-p-naphthylbenzohydroxamato)Copper(II), [N-p-NBHA-Cu(II)] (2) complexes with poly(A) have been investigated by biophysical techniques namely, absorption spectroscopy, fluorescence spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, circular dichroism spectroscopy, viscometric measurements and through molecular docking studies. The intrinsic binding constants (Kb) of complexes were determined following the order of N-p-TBHA-Co(II)] > N-p-NBHA-Cu(II), along with hyperchromism and a bathochromic shift for both complexes. The fluorescence quenching method revealed an interaction between poly(A)-N-p-TBHA-Co(II)/poly(A)-N-p-NBHA-Cu(II). The mode of binding was also determined via the fluorescence ferrocyanide quenching method. The increase in the viscosity of poly(A) that occurred from increasing the concentration of the N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) complex was scrutinized. The characteristics of the interaction site of poly(A) with N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) were adenine and phosphate groups, as revealed by DRS-FTIR spectroscopy. Based on these observations, a partial intercalative mode of the binding of poly(A) has been proposed for both complexes. Circular dichroism confirmed the interaction of both the complexes with poly(A). The molecular docking results illustrated that complexes strongly interact with poly(A) via the relative binding energies of the docked structure as -259.39eV and -226.30eV for N-p-TBHA-Co(II) and N-p-NBHA-Cu(II) respectively. Moreover, the binding affinity of N-p-TBHA-Co(II) is higher in all aspects than N-p-NBHA-Cu(II) for poly(A).
Collapse
Affiliation(s)
- Yamini Thakur
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Mamta Tripathi
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Bharati Verma
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Rubi Khilari
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Rainy Agrawal
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Likheshwari
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Mohammad Khursheed Siddiqi
- b Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh - 202002 , Uttar Pradesh , India
| | - Rama Pande
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Eli Mohapatra
- c Biochemistry Department , All India Institute of Medical Sciences, Raipur , Chhattisgarh - 492099
| | - Rizwan Hasan Khan
- b Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh - 202002 , Uttar Pradesh , India
| |
Collapse
|
13
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
14
|
Fluconazole inhibits cellular ergosterol synthesis to confer synergism with berberine against yeast cells. J Glob Antimicrob Resist 2018; 13:125-130. [DOI: 10.1016/j.jgar.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
|
15
|
Haque L, Bhuiya S, Das S. Self-structure assembly in single stranded polyriboadenylic acid by benzophenanthridine alkaloid: Spectroscopic and calorimetric exploration. Int J Biol Macromol 2018; 106:1130-1138. [DOI: 10.1016/j.ijbiomac.2017.08.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
16
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Bhattacharjee P, Sarkar S, Pandya P, Bhadra K. Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach. J Biomol Struct Dyn 2016; 34:2722-2740. [DOI: 10.1080/07391102.2015.1126694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp. Antimicrob Agents Chemother 2016; 60:3551-7. [PMID: 27021328 PMCID: PMC4879420 DOI: 10.1128/aac.01846-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/19/2016] [Indexed: 01/21/2023] Open
Abstract
The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense. Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).
Collapse
|
19
|
Interaction of the tetracyclines with double-stranded RNAs of random base sequence: new perspectives on the target and mechanism of action. J Antibiot (Tokyo) 2016; 69:622-30. [PMID: 26786504 DOI: 10.1038/ja.2015.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
The 16S rRNA binding mechanism proposed for the antibacterial action of the tetracyclines does not explain their mechanism of action against non-bacterial pathogens. In addition, several contradictory base pairs have been proposed as their binding sites on the 16S rRNA. This study investigated the binding of minocycline and doxycycline to short double-stranded RNAs (dsRNAs) of random base sequences. These tetracyclines caused a dose-dependent decrease in the fluorescence intensities of 6-carboxyfluorescein (FAM)-labelled dsRNA and ethidium bromide (EtBr)-stained dsRNA, indicating that both drugs bind to dsRNA of random base sequence in a manner that is competitive with the binding of EtBr and other nucleic acid ligands often used as stains. This effect was observable in the presence of Mg(2+). The binding of the tetracyclines to dsRNA changed features of the fluorescence emission spectra of the drugs and the CD spectra of the RNA, and inhibited RNase III cleavage of the dsRNA. These results indicate that the double-stranded structures of RNAs may have a more important role in their interaction with the tetracyclines than the specific base pairs, which had hitherto been the subject of much investigation. Given the diverse functions of cellular RNAs, the binding of the tetracyclines to their double-stranded helixes may alter the normal processing and functioning of the various biological processes they regulate. This could help to explain the wide range of action of the tetracyclines against various pathogens and disease conditions.
Collapse
|
20
|
Xu L, Hong S, Sun N, Wang K, Zhou L, Ji L, Pei R. Berberine as a novel light-up i-motif fluorescence ligand and its application in designing molecular logic systems. Chem Commun (Camb) 2016; 52:179-82. [DOI: 10.1039/c5cc08242k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Berberine is reported as a light-up fluorescence ligand for i-motif structures, which enables the development of label-free DNA-based logic gates.
Collapse
Affiliation(s)
- Lijun Xu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Na Sun
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Kewei Wang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Lu Zhou
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Liya Ji
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou, 215123
| |
Collapse
|
21
|
Yuan ZY, Lu X, Lei F, Chai YS, Wang YG, Jiang JF, Feng TS, Wang XP, Yu X, Yan XJ, Xing DM, Du LJ. TATA boxes in gene transcription and poly (A) tails in mRNA stability: New perspective on the effects of berberine. Sci Rep 2015; 5:18326. [PMID: 26671652 PMCID: PMC4680869 DOI: 10.1038/srep18326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023] Open
Abstract
Berberine (BBR) is a natural compound with variable pharmacological effects and a broad panel of target genes. We investigated berberine’s pharmacological activities from the perspective of its nucleotide-binding ability and discovered that BBR directly regulates gene expression by targeting TATA boxes in transcriptional regulatory regions as well as the poly adenine (poly (A)) tail at the mRNA terminus. BBR inhibits gene transcription by binding the TATA boxes in the transcriptional regulatory region, but it promotes higher levels of expression by targeting the poly (A) tails of mRNAs. The present study demonstrates that TATA boxes and poly (A) tails are the first and second primary targets by which BBR regulates gene expression. The final outcome of gene regulation by BBR depends on the structure of the individual gene. This is the first study to reveal that TATA boxes and poly (A) tails are direct targets for BBR in its regulation of gene expression. Our findings provide a novel explanation for the complex activities of a small molecule compound in a biological system and a novel horizon for small molecule-compound pharmacological studies.
Collapse
Affiliation(s)
- Zhi-Yi Yuan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta Gen Subj 2015; 1860:930-944. [PMID: 26522497 DOI: 10.1016/j.bbagen.2015.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. SCOPE OF THE REVIEW This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. MAJOR CONCLUSIONS This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. GENERAL SIGNIFICANCE It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
23
|
Roviello GN, Musumeci D, Roviello V, Pirtskhalava M, Egoyan A, Mirtskhulava M. Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1338-1347. [PMID: 26199837 PMCID: PMC4505092 DOI: 10.3762/bjnano.6.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 06/10/2023]
Abstract
The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA)) both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA) tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Domenica Musumeci
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Valentina Roviello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università di Napoli “Federico II”, 80125 Napoli, Italy
| | | | | | | |
Collapse
|
24
|
Khan AY, Saha B, Kumar GS. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:615-624. [PMID: 24861262 DOI: 10.1016/j.saa.2014.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
Collapse
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
25
|
Tan K, Li J, Li H, Wang Y, Yuan R. A highly sensitive dual-readout assay based on poly(A) and gold nanoparticles for palmatine hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:198-203. [PMID: 24316533 DOI: 10.1016/j.saa.2013.11.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 06/02/2023]
Abstract
This report presents a highly sensitive, poly(A)-stabilized gold nanoparticle-based assay with dual readouts (resonance light scattering and colorimetric) for detecting palmatine hydrochloride (PaH) in real samples. The detection mechanism is based on the fact that palmatine hydrochloride has strong affinity to poly(A), which can stabilize gold nanoparticles at high ionic strength, and cause the aggregation of poly(A)-stabilized AuNPs, resulting in the enhanced resonance light scattering (RLS). At the same time, the color change of poly(A)-stabilized AuNPs solution is from red to blue via purple. Thus a highly sensitive RLS assay for PaH has been developed with a linear range of 0.023-2.5 μg/mL. The limit of detection (LOD, 3σ) is 2.3 ng/mL. In this work, the reaction mechanism of this system was investigated by scanning electron microscope (SEM), dark-field light scattering images (DLSI), dynamiclight scattering (DLS) and circular dichroism (CD). This proposed method was also applied successfully for the determination of PaH in pharmaceutical preparations and urine samples with RSD⩽4.0%. The results are in good agreement with those from the official method.
Collapse
Affiliation(s)
- Kejun Tan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Jiayu Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huachun Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingying Wang
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rui Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
26
|
Pradhan AB, Haque L, Roy S, Das S. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study. PLoS One 2014; 9:e87992. [PMID: 24498422 PMCID: PMC3912202 DOI: 10.1371/journal.pone.0087992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| | - Snigdha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| | - Suman Das
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India
| |
Collapse
|
27
|
Das S, Parveen S, Pradhan AB. An insight into the interaction of phenanthridine dyes with polyriboadenylic acid: spectroscopic and thermodynamic approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:356-366. [PMID: 24060481 DOI: 10.1016/j.saa.2013.08.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/17/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
Interaction of two phenanthridine dyes, namely ethidium bromide (EB) and propidium iodide (PI) with polyriboadenylic acid was investigated using various spectroscopic techniques. They were found to bind only with the single stranded form of the polymer, while no affinity was observed for the double stranded form. Enhanced binding observed for PI compared to EB may be attributed to the presence of external alkyl chain in PI. Thermodynamic studies showed negative enthalpy and negative entropy changes for the binding of both the dyes. Salt dependent studies revealed a lesser electrolytic contribution compared to the nonelectrolytic contribution to the total Gibbs free energy change in each case. This indicated importance of hydrophobic and van der Waal's interaction for the binding process. Overall, the binding data and detail energetics of interaction presented here would be helpful in the design of phenanthridine based molecules that interact with specific RNA structure.
Collapse
Affiliation(s)
- Suman Das
- Department of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
28
|
Pradhan AB, Haque L, Bhuiya S, Das S. Induction of self-structure in polyriboadenylic acid by the benzophenanthridine plant alkaloid chelerythrine: a spectroscopic approach. RSC Adv 2014. [DOI: 10.1039/c4ra07075e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Induction of self-structure in polyriboadenylic acid by chelerythrine.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| |
Collapse
|
29
|
Paul P, Suresh Kumar G. Self-structure formation in polyadenylic acid by small molecules: new insights from the binding of planar dyes thionine and toluidine blue O. RSC Adv 2014. [DOI: 10.1039/c4ra02671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thionine and toluidine blue targeting poly(A).
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
30
|
Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 2013; 57:6016-27. [PMID: 24060867 DOI: 10.1128/aac.00499-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It was found in our previous study that berberine (BBR) and fluconazole (FLC) used concomitantly exhibited a synergism against FLC-resistant Candida albicans in vitro. The aim of the present study was to clarify how BBR and FLC worked synergistically and the underlying mechanism. Antifungal time-kill curves indicated that the synergistic effect of the two drugs was BBR dose dependent rather than FLC dose dependent. In addition, we found that BBR accumulated in C. albicans cells, especially in the nucleus, and resulted in cell cycle arrest and significant change in the transcription of cell cycle-related genes. Besides BBR, other DNA intercalators, including methylene blue, sanguinarine, and acridine orange, were all found to synergize with FLC against FLC-resistant C. albicans. Detection of intracellular BBR accumulation by fluorescence measurement showed that FLC played a role in increasing intracellular BBR concentration, probably due to its effect in disrupting the fungal cell membrane. Similar to the case with FLC, other antifungal agents acting on the cell membrane were able to synergize with BBR. Interestingly, we found that the efflux of intracellular BBR was FLC independent but strongly glucose dependent and associated with the drug efflux pump Cdr2p. These results suggest that BBR plays a major antifungal role in the synergism of FLC and BBR, while FLC plays a role in increasing the intracellular BBR concentration.
Collapse
|
31
|
Basu A, Jaisankar P, Kumar GS. Photophysical and calorimetric studies on the binding of 9-O-substituted analogs of the plant alkaloid berberine to double stranded poly(A). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:105-14. [PMID: 23792948 DOI: 10.1016/j.jphotobiol.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023]
Abstract
This interaction of four novel 9-O-substituted analogs of the plant alkaloid berberine with double stranded poly(A) was studied using a variety of biophysical techniques. Remarkably higher binding of two 9-O-ω-amino alkyl ether analogs compared to the two 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs was observed. Quantum efficiency values suggested that energy was transferred from the adenine base pairs to the analogs on binding. Ferrocyanide quenching and viscosity studies revealed the binding mode to be intercalative for these analogs. Circular dichroism studies showed that these analogs induced significant conformational changes in the secondary structure of ds poly(A). Energetics of the binding suggested that 9-O-N-aryl/arylalkyl amino carbonyl methyl berberines bound very weakly to ds poly(A). The binding of 9-O-ω-amino alkyl ether analogs was entropy dominated with a smaller but favorable enthalpic contribution to the Gibbs energy. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy-entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
32
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
33
|
Kumar GS. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci 2012; 37:539-52. [DOI: 10.1007/s12038-012-9217-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Basu A, Jaisankar P, Kumar GS. 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogues induce self-structure in polyadenylic acid. RSC Adv 2012. [DOI: 10.1039/c2ra20841e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Wu F, Shao Y, Ma K, Cui Q, Liu G, Xu S. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site. Org Biomol Chem 2012; 10:3300-7. [DOI: 10.1039/c2ob00028h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Lin WC, Lin JY. Berberine down-regulates the Th1/Th2 cytokine gene expression ratio in mouse primary splenocytes in the absence or presence of lipopolysaccharide in a preventive manner. Int Immunopharmacol 2011; 11:1984-90. [DOI: 10.1016/j.intimp.2011.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 01/21/2023]
|
37
|
Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011; 50:9088-113. [PMID: 21863895 PMCID: PMC3673541 DOI: 10.1021/bi201077h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
Collapse
Affiliation(s)
- Hongjuan Xi
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Erik Davis
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - David Hyde-Volpe
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
38
|
Chen F, Jin Z, Li H, He S. Synthesis, crystal structure, and properties of two metal complexes of imidazole and an ONO donor hydrazone. J COORD CHEM 2011. [DOI: 10.1080/00958972.2011.614948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fengying Chen
- a College of Chemistry and Material Science, Shaanxi Key Laboratory of Physical-Inorganic Chemistry, Northwest University , Xi’an 710069 , P.R. China
- b Department of Chemistry and Chemical Engineering , Shangluo University , Shangluo 726000 , P.R. China
| | - Zhenguo Jin
- b Department of Chemistry and Chemical Engineering , Shangluo University , Shangluo 726000 , P.R. China
| | - Hengxin Li
- a College of Chemistry and Material Science, Shaanxi Key Laboratory of Physical-Inorganic Chemistry, Northwest University , Xi’an 710069 , P.R. China
| | - Shuiyang He
- a College of Chemistry and Material Science, Shaanxi Key Laboratory of Physical-Inorganic Chemistry, Northwest University , Xi’an 710069 , P.R. China
| |
Collapse
|
39
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
40
|
Cecil CE, Davis JM, Cech NB, Laster SM. Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis). Int Immunopharmacol 2011; 11:1706-14. [PMID: 21683808 DOI: 10.1016/j.intimp.2011.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/06/2023]
Abstract
In this study we tested whether the isoquinoline alkaloid berberine can inhibit the growth of influenza A. Our experiments showed strong inhibition of the growth of H1N1 influenza A strains PR/8/34 or WS/33 in RAW 264.7 macrophage-like cells, A549 human lung epithelial-derived cells and murine bone marrow derived macrophages, but not MDCK canine kidney cells. Studies of the mechanism underlying this effect suggest that berberine acts post-translationally to inhibit virus protein trafficking/maturation which in turn inhibits virus growth. Berberine was also evaluated for its ability to inhibit production of TNF-α and PGE(2) from A/PR/8/34 infected-RAW 264.7 cells. Our studies revealed strong inhibition of production of both mediators and suggest that this effect is distinct from the anti-viral effect. Finally, we asked whether berberine-containing ethanol extracts of goldenseal also inhibit the growth of influenza A and production of inflammatory mediators. We found strong effectiveness at high concentrations, although upon dilution extracts were somewhat less effective than purified berberine. Taken together, our results suggest that berberine may indeed be useful for the treatment of infections with influenza A.
Collapse
Affiliation(s)
- Chad E Cecil
- Department of Microbiology, 4514 Thomas Hall, North Carolina State University, Raleigh NC 27695, United States
| | | | | | | |
Collapse
|
41
|
Chahine J, Saffon N, Cantuel M, Fery-Forgues S. Spontaneous formation of fluorescent nanofibers and reticulated solid from berberine palmitate: a new example of aggregation-induced emission enhancement in organic ion pairs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2844-2853. [PMID: 21338124 DOI: 10.1021/la104302d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The salt formed between the large aromatic berberine cation and the long-chain palmitate anion was synthesized and used to prepare aqueous suspensions of particles owing to a solvent-exchange method. Under these conditions, elongated particles were readily obtained. They were studied by transmission microscopy with polarized light, as well as by fluorescence and electron microscopy. They were shown to be probably crystallized nanofibers, which were stable in suspension. Unexpectedly, upon filtration and drying, these fibers evolved to give a reticulated solid. The fluorescence properties of the compound were analyzed in solution, in aqueous suspension and in the powder crystalline state. Interestingly, berberine palmitate is virtually not fluorescent in aqueous solution because of the quenching effect of water, but transition to the solid state was accompanied by a strong increase in fluorescence intensity. This phenomenon was explained by the original molecular arrangement in the solid state. Actually, in the crystal, the anions form a distinct layer, which limits parallel-stacking of the fluorescent cations. Moreover, the berberine cations are protected from the access of water molecules, and so no quenching effect can take place. This example confirms that the newly introduced concept of ion-pair aggregation-induced fluorescence enhancement can be extended to a variety of structures. It also shows the interest of ion pairs for preparing fluorescent nanofibers and reticulated solids using a solvent-exchange method that is particularly easy to implement.
Collapse
Affiliation(s)
- Joe Chahine
- Laboratoire des Interactions Moléculaires Réactivité Chimique et Photochimique, UMR CNRS 5623, Université Paul Sabatier , 31062 Toulouse cedex 9, France
| | | | | | | |
Collapse
|
42
|
Das A, Bhadra K, Achari B, Chakraborty P, Kumar GS. Interaction of aristololactam-β-D-glucoside and daunomycin with poly(A): spectroscopic and calorimetric studies. Biophys Chem 2011; 155:10-9. [PMID: 21392880 DOI: 10.1016/j.bpc.2011.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/11/2011] [Accepted: 01/30/2011] [Indexed: 11/19/2022]
Abstract
The binding of two sugar containing antibiotics viz. aristololactam-β-D-glucoside and daunomycin with single and double stranded poly(A) was investigated by spectroscopic and calorimetric studies. The binding affinity of daunomycin to ss poly(A) was of the order of 10⁶ M⁻¹ and that to ds poly(A) was of the order of 10⁵ M⁻¹. Aristololactam-β-D-glucoside showed a relatively weaker binding with an affinity of the order of 10⁴ M⁻¹ with both the conformations of poly(A). Fluorescence studies showed maximum quenching for daunomycin-ss poly(A) complexes. The binding constants calculated from fluorescence spectroscopy were in good agreement with that obtained from UV spectroscopy. Moderate perturbation of circular dichroic spectra of both the conformations of poly(A) in presence of these molecules with concomitant formation of prominent extrinsic CD bands in the 300-450 nm region further revealed the association. Isothermal titration calorimetry results showed an overall entropy driven binding in all the four systems though the entropy change was maximum in daunomycin-ss poly(A) binding. The binding affinity was also maximum for daunomycin-ss poly(A) and varied as daunomycin-ds poly(A) > aristololactam-β-D-glucoside-ds poly(A) > aristololactam-β-D-glucoside-ss poly(A). A 1:1 binding stoichiometry was observed in all the cases, as confirmed by Job plot analysis, indicating the interaction to consist of a single binding mode. Ferrocyanide quenching studies showed good stacking interaction in all cases but was best for daunomycin-ss poly(A) interaction. No self-structure formation was observed in poly(A) with both daunomycin and aristololactam-β-D-glucoside suggesting the hindrance of the sugar moiety for such structural organization.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, CSIR, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
43
|
Interaction of plant alkaloid, berberine, with zwitterionic and negatively charged phospholipid bilayers. ACTA ACUST UNITED AC 2011. [DOI: 10.2478/v10214-011-0007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interaction of plant alkaloid, berberine, with zwitterionic and negatively charged phospholipid bilayers
Berberine exhibits many pharmacological activities e.g. antibacterial, anti-inflammatory, antiproliferative and apoptosis-inducing. Interaction of berberine with model membranes was studied for the first time using differential scanning calorimetry, fluorescence spectroscopy and turbidity measurements. Influence of berberine on thermotropic properties of bilayers formed from zwitterionic DMPC was insignificant, whereas in bilayers formed from negatively charged DMPG berberine reduced the temperature and cooperativity of main phospholipid phase transition. In higher concentrations berberine induced complex double-peak transition, with the new peak appearing in temperature higher than the original one. It suggested the interaction of the alkaloid with lipid headgroup region of the bilayer. Additionally, berberine quenched fluorescence of Prodan to a higher extent than Laurdan that pointed to stronger interaction with membrane segments close to its surface. Berberine-induced fluorescence quenching of both probes was more pronounced in DPPG than in DPPC bilayers. It was concluded that electrostatic interactions governed berberine association with model membrane.
Collapse
|
44
|
Islam MM, Basu A, Suresh Kumar G. Binding of 9-O-(ω-amino) alkyl ether analogues of the plant alkaloid berberine to poly(A): insights into self-structure induction. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00209g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Suzuki H, Tanabe H, Mizukami H, Inoue M. Selective regulation of multidrug resistance protein in vascular smooth muscle cells by the isoquinoline alkaloid coptisine. Biol Pharm Bull 2010; 33:677-82. [PMID: 20410605 DOI: 10.1248/bpb.33.677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When the biological activites of hydrophobic drugs or xenobiotics are studied, it is important to clarify their effects on expression and function of multidrug resistance (MDR) protein. We therefore evaluated the effects of coptisine on MDR in comparison with the structurally related isoquinoline alkaloids berberine and palmatine. To achieve this, we investigated the effects of the three alkaloids on the expression and function of P-glycoprotein/MDR1, MDR1 gene products, in vascular smooth muscle cells (VSMCs). In A10 cells (a rat VSMC line), coptisine upregulated the mRNAs of Mdr1a and Mdr1b, rodent homologues of human MDR1, and these effects were completely abrogated by actinomycin D. Coptisine also induced Mdr1a/1b protein expression and enhanced the efflux of rhodamine 123 from A10 cells. In contrast, berberine and palmatine slightly upregulated the mRNAs of Mdr1a and Mdr1b, but failed to induce Mdr1a/1b protein expression or stimulate rhodamine 123 efflux. To clarify whether these effects occurred in other cells, the effects of the three alkaloids on Mdr1a/1b function were examined in 3Y1, dRLh-84 and B16 cells. Coptisine and berberine enhanced rhodamine 123 efflux in all three cell types, while palmatine inhibited it, based on the finding that palmatine efficiently activated the Mdr1a ATPase activity as a good substrate for Mdr1a. Therefore, the three isoquinoline alkaloids regulated MDR differently in cell type-specific manners. In particular, only coptisine induced Mdr1a/1b in A10 cells and stimulated rhodamine 123 efflux. Taken together, coptisine appears to exert VSMC-selective effects on Mdr1a/1b induction in contrast to berberine and palmatine.
Collapse
Affiliation(s)
- Hiroka Suzuki
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Japan
| | | | | | | |
Collapse
|
46
|
Boberek JM, Stach J, Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 2010; 5:e13745. [PMID: 21060782 PMCID: PMC2966414 DOI: 10.1371/journal.pone.0013745] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022] Open
Abstract
Background Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools. Methodology/Principal Findings First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells. Conclusions The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.
Collapse
Affiliation(s)
- Jaroslaw M. Boberek
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, University of London, London, United Kingdom
| | - Jem Stach
- School of Biology, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Liam Good
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Liang Y, Xie P, Chau F. Chromatographic fingerprinting and related chemometric techniques for quality control of traditional Chinese medicines. J Sep Sci 2010; 33:410-21. [PMID: 20099260 DOI: 10.1002/jssc.200900653] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Development of chromatographic fingerprint (CF) and related chemometric methods and their applications to quality control of traditional Chinese medicines (TCMs) were discussed. CF is essentially a kind of quality control method for TCMs (or Chinese herbal medicines). Also, it is a quality-relevant-data high-throughput and integral tool to explore chemically the complexity of TCMs. With the help of chemometrics, some difficulties in evaluation and analysis of CFs, such as calculation of information content, peak alignment, pattern analysis, deconvolution of overlapping peaks, etc. could be well solved. To further explore TCMs synergic quality, intensive study of CF coupled with chemometrics will create the possibility to achieve the aim to reveal the working mechanisms of TCMs and to further control and strengthen TCMs' intrinsic quality in a comprehensive manner.
Collapse
Affiliation(s)
- Yizeng Liang
- Research Center of Modernization of Chinese Medicines, Central South University, Changsha, PR China.
| | | | | |
Collapse
|
48
|
Chowdhury SR, Islam MM, Kumar GS. Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: insights into the structural and energetics aspects. MOLECULAR BIOSYSTEMS 2010; 6:1265-76. [PMID: 20442937 DOI: 10.1039/b927001a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elucidation of the molecular aspects of small molecule-RNA complexation is of prime importance for rational RNA targeted drug design strategies. Towards this, the interaction of the cytotoxic plant alkaloid sanguinarine to three double stranded ribonucleic acids, poly (A).poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical and thermodynamic techniques. Absorbance and fluorescence studies showed that the alkaloid bound cooperatively to these RNAs with binding affinities of the order 10(4) M(-1). Fluorescence quenching and hydrodynamic studies gave evidence for intercalation of sanguinarine to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity values obtained from spectroscopic data. The binding of sanguinarine stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of sanguinarine to these double stranded RNAs varied in the order, poly(A).poly(U) > poly(I).poly(C) >> poly(C).poly(G). The temperature dependence of the enthalpy changes afforded negative values of heat capacity changes for the binding of sanguinarine to poly(A).poly(U) and poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation phenomena was also seen in poly(A).poly(U) and poly(I).poly(C) systems that correlated to the strong binding involving a multiplicity of weak noncovalent interactions compared to the weak binding with poly(C).poly(G). These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.
Collapse
Affiliation(s)
- Sebanti Roy Chowdhury
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
49
|
Bhadra K, Kumar GS. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med Res Rev 2010; 31:821-62. [DOI: 10.1002/med.20202] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|