1
|
Oliveira LMF, Valverde D, Costa GJ, Borin AC. Excited state relaxation mechanisms and tautomerism effects in 2,6-Diamino-8-Azapurine. Photochem Photobiol 2025. [PMID: 39934091 DOI: 10.1111/php.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 02/13/2025]
Abstract
The photochemistry of 9H-2,6-diamino-8-azapurine (9H-8AZADAP), a promising fluorescent probe, was investigated using the Multi-State Complete-Active-Space Second-Order Perturbation Theory (MS-CASPT2) quantum chemical method, along with the Average Solvent Electrostatic Configuration and Free Energy Gradient (ASEC-FEG) and Polarizable Continuum Model (PCM) to take into account water solvation effects. For both isolated and solvated species, the main photochemical event is initiated by the absorption of light from ground-state to the bright 1(ππ* La) state, which undergoes barrierless evolution to its minimum energy region (1(ππ* La)min) without crossing any other potential energy surface (PES). Subsequently, the excess of energy is released through fluorescence. From the 1(ππ* La)min region, two radiationless decay pathways back to the initial ground state, mediated by two distinct conical intersections between the ground and 1(ππ* La) states, are found to be unlikely due to the presence of high energy barriers in both environments. Our results also indicate that the solvation effects are more pronounced when using the ASEC-FEG method, which predicts larger structural and energy changes, especially concerning energetic barriers. Based on the free energy perturbation theory (FEP), a hypothetical thermodynamic cycle was devised, from which we infer that in an aqueous environment the N3 site is the most favorable for protonation. We also conclude that the 8H-8AZADAP tautomer is responsible for the fluorescent band observed experimentally at 410 nm and elucidates the mechanism of phototautomerism.
Collapse
Affiliation(s)
- Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Danillo Valverde
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Gustavo Juliani Costa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021; 22:9552. [PMID: 34502459 PMCID: PMC8430589 DOI: 10.3390/ijms22179552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chemically modified nucleobases are thought to be important for therapeutic purposes as well as diagnosing genetic diseases and have been widely involved in research fields such as molecular biology and biochemical studies. Many artificially modified nucleobases, such as methyl, halogen, and aryl modifications of purines at the C8 position and pyrimidines at the C5 position, are widely studied for their biological functions. DNA containing these modified nucleobases can form non-canonical helical structures such as Z-DNA, G-quadruplex, i-motif, and triplex. This review summarizes the synthesis of chemically modified nucleotides: (i) methylation, bromination, and arylation of purine at the C8 position and (ii) methylation, bromination, and arylation of pyrimidine at the C5 position. Additionally, we introduce the non-canonical structures of nucleic acids containing these modifications.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Kwnag-Im Oh
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Ho-Seong Jin
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Hye-Bin Ahn
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Byeong-Seon Kim
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
- Department of Chemistry Education, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Joon-Hwa Lee
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| |
Collapse
|
3
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
4
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
5
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
6
|
Miller MC, Ohrenberg CJ, Kuttan A, Trent JO. Separation of Quadruplex Polymorphism in DNA Sequences by Reversed-Phase Chromatography. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2015; 61:17.7.1-17.7.18. [PMID: 26344226 PMCID: PMC4561857 DOI: 10.1002/0471142700.nc1707s61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This unit describes a method for the separation of a mixture of quadruplex conformations formed from the same parent sequence via reversed-phase chromatography (RPC). Polymorphism is inherent to quadruplex formation and even relatively simple quadruplex-forming sequences can fold into a cornucopia of possible conformations and topologies. Isolation of a specific conformation for study can be problematic. This is especially true for conformations of the human telomere sequence d(GGG(TTAGGG)3). High performance liquid chromatography (HPLC), especially reversed-phase chromatography, has been a mainstay of nucleic acid research and purification for many decades. We have successfully applied this method to the problem of separating individual quadruplex species in the ensemble from the same parent sequence.
Collapse
Affiliation(s)
- M. Clarke Miller
- Department of Chemistry and Biochemistry, University of North Georgia, 3820 Mundy Mill Road, Oakwood, Georgia 30566
- James Graham Brown Cancer Center, Clinical Translational Research Building, University of Louisville, 505 South Hancock Street, Louisville, KY 40202
| | - Carl J. Ohrenberg
- Department of Chemistry and Biochemistry, University of North Georgia, 3820 Mundy Mill Road, Oakwood, Georgia 30566
| | - Ashani Kuttan
- James Graham Brown Cancer Center, Clinical Translational Research Building, University of Louisville, 505 South Hancock Street, Louisville, KY 40202
| | - John O. Trent
- James Graham Brown Cancer Center, Clinical Translational Research Building, University of Louisville, 505 South Hancock Street, Louisville, KY 40202
- Department of Medicine, University of Louisville, Clinical Translational Research Building, University of Louisville, 505 South Hancock Street, Louisville, KY 40202
| |
Collapse
|
7
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
8
|
Kasai H, Kawai K, Song MF, Li YS, Hattori T, Matsuda T. Analyses of 8-Methyldeoxyadenosine and 8-Methyldeoxyguanosine as Markers of Free Radical-mediated DNA Methylation in Mouse. Genes Environ 2013. [DOI: 10.3123/jemsge.35.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Le HT, Buscaglia R, Dean WL, Chaires JB, Trent JO. Calculation of hydrodynamic properties for G-quadruplex nucleic acid structures from in silico bead models. Top Curr Chem (Cham) 2013; 330:179-210. [PMID: 22886555 PMCID: PMC3580009 DOI: 10.1007/128_2012_351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nucleic acids enriched in guanine bases can adopt unique quadruple helical tertiary structures known as G-quadruplexes. G-quadruplexes have emerged as attractive drug targets as many G-quadruplex-forming sequences have been discovered in functionally critical sites within the human genome, including the telomere, oncogene promoters, and mRNA processing sites. A single G-quadruplex-forming sequence can adopt one of many folding topologies, often resulting in a lack of a single definitive atomic-level resolution structure for many of these sequences and a major challenge to the discovery of G-quadruplex-selective small molecule drugs. Low-resolution techniques employed to study G-quadruplex structures (e.g., CD spectroscopy) are often unable to discern between G-quadruplex structural ensembles, while high-resolution techniques (e.g., NMR spectroscopy) can be overwhelmed by a highly polymorphic system. Hydrodynamic bead modeling is an approach to studying G-quadruplex structures that could bridge the gap between low-resolution techniques and high-resolution molecular models. Here, we present a discussion of hydrodynamic bead modeling in the context of studying G-quadruplex structures, highlighting recent successes and limitations to this approach, as well as an example featuring a G-quadruplex structure formed from the human telomere. This example can easily be adapted to the investigation of any other G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Huy T Le
- Clinical and Translation Research Building, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA
| | | | | | | | | |
Collapse
|
10
|
Le HT, Miller MC, Buscaglia R, Dean WL, Holt PA, Chaires JB, Trent JO. Not all G-quadruplexes are created equally: an investigation of the structural polymorphism of the c-Myc G-quadruplex-forming sequence and its interaction with the porphyrin TMPyP4. Org Biomol Chem 2012; 10:9393-404. [PMID: 23108607 PMCID: PMC3501587 DOI: 10.1039/c2ob26504d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G-quadruplexes, DNA tertiary structures highly localized to functionally important sites within the human genome, have emerged as important new drug targets. The putative G-quadruplex-forming sequence (Pu27) in the NHE-III(1) promoter region of the c-Myc gene is of particular interest as stabilization of this G-quadruplex with TMPyP4 has been shown to repress c-Myc transcription. In this study, we examine the Pu27 G-quadruplex-forming sequence and its interaction with TMPyP4. We report that the Pu27 sequence exists as a heterogeneous mixture of monomeric and higher-order G-quadruplex species in vitro and that this mixture can be partially resolved by size exclusion chromatography (SEC) separation. Within this ensemble of configurations, the equilibrium can be altered by modifying the buffer composition, annealing procedure, and dialysis protocol thereby affecting the distribution of G-quadruplex species formed. TMPyP4 was found to bind preferentially to higher-order G-quadruplex species suggesting the possibility of stabilization of the junctions of the c-Myc G-quadruplex multimers by porphyrin end-stacking. We also examined four modified c-Myc sequences that have been previously reported and found a narrower distribution of G-quadruplex configurations compared to the parent Pu27 sequence. We could not definitively conclude whether these G-quadruplex structures were selected from the original ensemble or if they are new G-quadruplex structures. Since these sequences differ considerably from the wild-type promoter sequence, it is unclear whether their structures have any actual biological relevance. Additional studies are needed to examine how the polymorphic nature of G-quadruplexes affects the interpretation of in vitro data for c-Myc and other G-quadruplexes. The findings reported here demonstrate that experimental conditions contribute significantly to G-quadruplex formation and should be carefully considered, controlled, and reported in detail.
Collapse
Affiliation(s)
- Huy T. Le
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - M. Clarke Miller
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
| | - Robert Buscaglia
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - William L. Dean
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - Patrick A. Holt
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - Jonathan B. Chaires
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - John O. Trent
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| |
Collapse
|
11
|
Structural probes in quadruplex nucleic acid structure determination by NMR. Molecules 2012; 17:13073-86. [PMID: 23128087 PMCID: PMC6268857 DOI: 10.3390/molecules171113073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Traditionally, isotope-labelled DNA and RNA have been fundamental to nucleic acid structural studies by NMR. Four-stranded nucleic acid architectures studies increasingly benefit from a plethora of nucleotide conjugates for resonance assignments, the identification of hydrogen bond alignments, and improving the population of preferred species within equilibria. In this paper, we review their use for these purposes. Most importantly we identify reasons for the failure of some modifications to result in quadruplex formation.
Collapse
|
12
|
Miller MC, Trent JO. Resolution of quadruplex polymorphism by size-exclusion chromatography. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.3. [PMID: 21638270 DOI: 10.1002/0471142700.nc1703s45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This unit describes a method for separation of quadruplex species formed from the same sequence via size-exclusion chromatography (SEC). Polymorphism is inherent to quadruplex formation, and even relatively simple quadruplex-forming sequences, such as the human telomere sequence d(GGG(TTAGGG)(3)), can form a myriad of possible configurations. HPLC, especially using reversed-phase and anion-exchange methods, has been a mainstay of nucleic acids research and purification for many decades. These methods have been applied for separation of individual quadruplex species formed in a mixture from the same parent sequence.
Collapse
Affiliation(s)
- M Clarke Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
13
|
Miller MC, Le HT, Dean WL, Holt PA, Chaires JB, Trent JO. Polymorphism and resolution of oncogene promoter quadruplex-forming sequences. Org Biomol Chem 2011; 9:7633-7. [PMID: 21938285 DOI: 10.1039/c1ob05891f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the separation of several quadruplex species formed by ten promoter sequences by Size Exclusion Chromatography (SEC). Modification at the 5' or 3' ends or in loop regions of quadruplex forming sequences has become the standard technique for dealing with quadruplex polymorphism. However, conformations produced employing this method or by other means of artificially shifting the equilibrium may not represent the species that are present in vivo. This method enables an unperturbed view of the structural polymorphism inherent to quadruplex formation. Separation via SEC facilitates studies on quadruplex structure and biophysical properties without the need for sequence modification.
Collapse
Affiliation(s)
- M Clarke Miller
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
14
|
Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A. The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands. Nucleic Acids Res 2011; 40:461-75. [PMID: 21908403 PMCID: PMC3245916 DOI: 10.1093/nar/gkr670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Bauer L, Tlučková K, Tóhová P, Viglaský V. G-quadruplex motifs arranged in tandem occurring in telomeric repeats and the insulin-linked polymorphic region. Biochemistry 2011; 50:7484-92. [PMID: 21819151 DOI: 10.1021/bi2003235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To date, various G-quadruplex structures have been reported in the human genome. There are numerous studies focusing on quadruplex-forming sequences in general, but few studies have focused on two or more quadruplexes in the same molecule, which are most commonly found in telomeric DNA and other tandem repeats, e.g., insulin-linked polymorphic region (ILPR). Although the human telomere consists of a number of repeats, higher-order G-quadruplex structures are discussed less often because of the complexity of the structures. In this study, sequences consisting of 4-12 repeats of d(G(4)TGT), d(G(3)T(2)A), and/or d(G(4)T(2)A) have been studied by circular dichroism, ultraviolet spectroscopy, and temperature-gradient gel electrophoresis. These sequences serve as a model for the arrangement of quadruplexes in the telomere and ILPR in solution. Our major findings are as follows. (i) The number of G-rich repeats has a great influence on G-quadruplex stability. (ii) The evidence of quadruplex-quadruplex interaction is confirmed. (iii) For the first time, we directly observed the melting behavior of different conformers in a single experiment. Our results agree with other calorimetric and spectroscopic data and data obtained by single-molecule studies, atomic force microscopy, and mechanical unfolding by optical tweezers. We propose that the end of telomeres can be formed by only a few tandem quadruplexes (fewer than three). Our findings improve our understanding of the mechanism of G-quadruplex formation in long repeats in G-rich-regulating parts of genes and telomere ends.
Collapse
Affiliation(s)
- Luboš Bauer
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, PJ Šafárik University , 04154 Košice, Slovakia
| | | | | | | |
Collapse
|
16
|
Borbone N, Amato J, Oliviero G, D'Atri V, Gabelica V, De Pauw E, Piccialli G, Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res 2011; 39:7848-57. [PMID: 21715378 PMCID: PMC3177218 DOI: 10.1093/nar/gkr489] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K+ or NH4+ ions, through the 5′-5′ stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.
Collapse
Affiliation(s)
- Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oliviero G, Borbone N, Amato J, D'Errico S, Galeone A, Piccialli G, Varra M, Mayol L. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability. Biopolymers 2009; 91:466-77. [PMID: 19189376 DOI: 10.1002/bip.21153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
G-quadruplexes are characteristic structural arrangements of guanine-rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G-quadruplexes. Recently, we reported the synthesis and structural studies of new G-quadruplex forming oligodeoxynucleotides (ODNs) in which the 3'- and/or the 5'-ends of four ODN strands are linked together by a non-nucleotidic tetra-end-linker (TEL). These TEL-ODN analogs having the sequence TGGGGT are able to form parallel G-quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL-G-quadruplexes using a combination of circular dichroism (CD), CD melting, (1)H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL-(TGGGGT)(4) analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL-G-quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G-quadruplexes formed by TEL-ODNs having the longer TEL (L1-4) are more stable than the corresponding G-quadruplexes having the shorter TEL (S1-4). The relative stability of S1-4 was also reported. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 466-477, 2009.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cahová H, Pohl R, Bednárová L, Nováková K, Cvacka J, Hocek M. Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerase incorporation into DNA. Org Biomol Chem 2008; 6:3657-60. [PMID: 18843392 DOI: 10.1039/b811935j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
dATP derivatives bearing Br, Me or Ph groups in position 8 were prepared and tested as substrates for DNA polymerases to show that 8-Br-dATP and 8-Me-dATP were efficiently incorporated, while 8-Ph-dATP was a poor substrate due to its bulky Ph group.
Collapse
Affiliation(s)
- Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Oliviero G, Amato J, Borbone N, Galeone A, Varra M, Piccialli G, Mayol L. Synthesis and characterization of DNA quadruplexes containing T-tetrads formed by bunch-oligonucleotides. Biopolymers 2006; 81:194-201. [PMID: 16235233 DOI: 10.1002/bip.20399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The solid phase syntheses of the bunch oligonucleotides and based on the sequences of the natural oligodeoxynucleotides (ODNs) d(TG2TG2C) and d(CG2TG2T), respectively, attached to a non-nucleotidic tetrabranched linker, are reported. Bunch-ODNs and were shown to form more stable monomolecular parallel G-quadruplexes and when compared with their tetramolecular counterparts [d(TG2TG2C)]4 and [d(CG2TG2T)]4, respectively. The structure and stability of all the synthesized complexes have been investigated by circular dichroism (CD), CD thermal denaturation experiments, and 1H-NMR (nuclear magnetic resonance) experiments at variable temperatures. Particularly, the spectroscopic data confirmed that 1 adopts a T-tetrad containing parallel-stranded quadruplex structure as in the tetramolecular complex.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Virgilio A, Esposito V, Randazzo A, Mayol L, Galeone A. 8-methyl-2'-deoxyguanosine incorporation into parallel DNA quadruplex structures. Nucleic Acids Res 2005; 33:6188-95. [PMID: 16257981 PMCID: PMC1275585 DOI: 10.1093/nar/gki924] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper concerns the Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) structural studies of the quadruple helix arrangements adopted by three tailored oligodeoxyribonucleotide analogues, namely d(TGMeGGT), d(TGGMeGT) and d(TGGGMeT), where dGMe represents a 8-methyl-2′-deoxyguanosine residue. The results of this study clearly demonstrate that the effects of the incorporation of dGMe instead of a dG residue are strongly dependant upon the positioning of a single base replacement along the sequence. As such, d(TGMeGGT), d(TGGMeGT) have been found to form 4-fold symmetric quadruplexes with all strands parallel and equivalent to each other, each more stable than their natural counterpart. NMR experiments clearly indicate that [d(TGMeGGT)]4 possesses a GMe-tetrad with all dGMe residues in a syn-glycosidic conformation while an anti-arrangement is apparent for the four dGMe of [d(TGGMeGT)]4. As the two complexes show a quite different CD behaviour, a possible relationship between the presence of residues adopting syn-glycosidic conformations and CD profiles is briefly discussed. As far as d(TGGGMeT) is concerned, NMR data indicate that at 25°C it exists primarily as a single-strand conformation in equilibrium with minor amounts of a quadruplex structure.
Collapse
Affiliation(s)
| | | | | | | | - Aldo Galeone
- To whom correspondence should be addressed. Tel: +39 081 678508; Fax: +39 081 678552;
| |
Collapse
|